K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

áp dụng Tc........... ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)

x/5 = -5 => x=-25

y/7=-5 =>y=-35

z/4=-5 => z= -20

9 tháng 2 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Do đó :

\(\frac{a}{b}=1\Rightarrow a=b\)\(\left(1\right)\)

\(\frac{b}{c}=1\Rightarrow b=c\)\(\left(2\right)\)

\(\frac{c}{a}=1\Rightarrow c=a\)\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)suy ra \(a=b=c\left(dpcm\right)\)

Vậy \(a=b=c\)

9 tháng 2 2018

1) a/b = b/c= c/a = a+b+c / a+b+ c = 1 (tính chất dãy tỉ số bằng nhau) 

=> đpcm

2) Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)

\(\frac{x}{3}=1;x=3.1=3\);\(\frac{y}{6}=1;y=6.1=6\);\(\frac{z}{10}=1;z=10.1=10\)

3 tháng 6 2017

vì x,y,z \(\in\)Z nên | x | \(\in\)N ; | y | \(\in\)N ; | z | \(\in\)N

Vậy | x | + | y | + | z | \(\ge\)0     ( 1 )

Mà | x | + | y | + | z | = 0             ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)| x | = | y | = | z | = 0

Do đó : x = y = z = 0

3 tháng 6 2017

Vì GTTĐ của 1 số luôn lớn hơn hoặc =0.

Mà |x|+|y|+|z|=0.

=>|x|=|y|=|z|=0.

=>x=y=z=0(thỏa mãn).

Vậy ....

12 tháng 2 2016

Bài 1:

<=>7[3(-x)]-12(x-5)=-3(11x-20)

=>-3(11x-20)=5

=>-33x=-55

=>-11.3x=-11.5 (rút gọn -11)

=>3x=5

\(\Rightarrow x=\frac{5}{3}\)

olm-logo.pngĐã duyệt

12 tháng 2 2016

bài 1:

<=>7[3(-x)]-12(x-5)=-3(11x-20)

=>-3(11x-20)=5

=>-33x=-55

=>-11.3x=-11.5 (rút gọn -11)

=>3x=5

=>x=\(\frac{5}{3}\)

5 tháng 7 2019

a

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)

\(\Rightarrow x=10;y=8;z=14\)

b

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)

\(\Rightarrow x=30;y=21;z=69\)

5 tháng 7 2019

a)Theo tính chất tỉ lệ thức:

\(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{7}\)=\(\frac{x+2y+z}{5+2.4+7}\)=\(\frac{40}{20}\)=2

Do đó x=2.5=10

          y=2.4=8

          z=2.7=14

b)Cũng theo tính chất tỉ lệ thức:

\(\frac{x}{10}\)=\(\frac{y}{7}\)=\(\frac{z}{23}\)=\(\frac{2x+y-z}{2.10+7-23}\)=\(\frac{12}{4}\)=3

Do vậy:x=3.10=30

            y=3.7=21

            z=3.23=69

12 tháng 2 2016

bai toan nay kho

29 tháng 4 2016

mk...

                                                              ... ko bít

3 tháng 2 2016

đề sai hay sao ý bn

9 tháng 8 2017

\(x^3+y^3+z^3\)

\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)

Mà x + y + z chia hết cho 6

\(\Rightarrow x^3+y^3+z^3⋮6\)

k mik nha!

9 tháng 8 2017

Xét hiệu :

\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)

\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)

\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)

\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp 

Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)

Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)