Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Ánh dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
\(\Rightarrow\) x = 1 . 18 = 18
y = 1 . 16 = 16
z = 1 . 15 = 15
b)
Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\) x = 2 . 15 = 30
y = 2 . 20 = 40
z = 2 . 28 = 56
c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)
áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1
\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)
\(\Rightarrow x=6;y=10\)
hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)
\(\Rightarrow x=-6;y=-10\)
Chúc bạn học tốt
2x-3y+4z=5
=>2x-3y-4.(-3x-3y-3)=5
14x+9y=-17
14x+9.(-8x:7+1)=-17
26x:7=-26
26x=-26.7
26x=-182
x=-182:26
x=-7
mình chỉ làm đc z thôi ko biết có đ ko.
- Theo đề bài,ta có:
\(\frac{2}{x}=\frac{3}{y}=\frac{1}{z}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\)
a) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\) và 2x-3y+4z
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{2x-3y+4z}{2.2-3.3+4.1}=\frac{5}{-1}=-5\)
- \(\frac{x}{2}=\left(-5\right).2=-10\)
- \(\frac{y}{3}=\left|\left(-5\right).3=-15\right|\)
- \(\frac{z}{1}=\left(-5\right).1=-5\)
Vậy x=-10,y=-15,z=-5
b) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{x^2.y^2.z^2}{2^2.3^2.1^2}=\frac{36}{36}=1\)
Áp dụng tính chất của dãy tỉ só bằng nhau:
- \(\frac{x}{2}=1.2=2\)
- \(\frac{y}{3}=1.3=3\)
- \(\frac{z}{1}=1.1=1\)
Vậy x=2,y=3,z=1.
^...^ ^_^
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Từ \(\hept{\begin{cases}2x=3y< =>\frac{x}{3}=\frac{y}{2}\\4z=5x< =>\frac{z}{5}=\frac{x}{4}\end{cases}< =>\frac{x}{12}}=\frac{y}{8}=\frac{z}{15}\)
Đặt \(\frac{x}{12}=\frac{y}{8}=\frac{z}{15}=k\)
\(< =>\hept{\begin{cases}\frac{x}{12}=k< =>x=12k\\\frac{y}{8}=k< =>y=8k\\\frac{z}{15}=k< =>z=15k\end{cases}}\)
Khi đó \(3y^2-z^2=-33\)
\(< =>z^2-3y^2=33\)
\(< =>\left(15k\right)^2-3\left(8k\right)^2=33\)
\(< =>225k^2-3.64k^2=33\)
\(< =>225k^2-192k^2=33\)
\(< =>33k^2=33\)
\(< =>k^2=1< =>\orbr{\begin{cases}k=1\left(1\right)\\k=-1\left(2\right)\end{cases}}\)
Với \(\left(1\right)< =>\hept{\begin{cases}x=12k=12\\y=8k=8\\z=15k=15\end{cases}}\)
Với \(\left(2\right)< =>\hept{\begin{cases}x=12k=-12\\y=8k=-8\\z=15k=-15\end{cases}}\)
Vậy ta có 2 bộ số \(\left\{x;y;z\right\}=\left\{-12;-8;-15\right\};\left\{12;8;15\right\}\)