Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}x^2+xy+\dfrac{y^2}{3}=2019\\z^2+\dfrac{y^2}{3}=1011\\x^2+xz+z^2=1008\end{matrix}\right.\Leftrightarrow x^2+xy+\dfrac{y^2}{3}=z^2+\dfrac{y^2}{3}+x^2+xz+z^2\)
\(\Rightarrow xy=2z^2+xz\Leftrightarrow xy+xz=2z^2+2xz\)
\(\Rightarrow x\left(y+z\right)=2z\left(x+z\right)\Leftrightarrow\dfrac{2z}{x}=\dfrac{y+z}{x+z}\left(đpcm\right)\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
\(\text{Ta có : }\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{y+x}\\ \Rightarrow\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\\ =\dfrac{\left(y+z\right)+\left(x+z\right)+\left(y+x\right)}{x+y+z}\\ =\dfrac{y+z+x+z+y+x}{x+y+z}\\ =\dfrac{\left(y+y\right)+\left(z+z\right)+\left(x+x\right)}{x+y+z}\\ =\dfrac{2y+2z+2x}{x+y+z}\\ =\dfrac{2\left(x+y+z\right)}{x+y+z}\\ =2\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z}{x}=2\\\dfrac{x+z}{y}=2\\\dfrac{y+x}{z}=2\end{matrix}\right.\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=2+2+2=6\)
Vậy \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=6\)
a/ Ta có ;
\(x+y+z=92\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Leftrightarrow x=20\\\dfrac{y}{15}=2\Leftrightarrow y=30\\\dfrac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)
Vậy .................
b/Ta có :
\(x+y-z=95\)
\(2x=3y=5z\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}\)
Áp dụng t/x dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}=\dfrac{x+y-z}{15+10-5}=\dfrac{95}{19}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\Leftrightarrow x=75\\\dfrac{y}{10}=5\Leftrightarrow y=50\\\dfrac{z}{5}=5\Leftrightarrow z=25\end{matrix}\right.\)
Vậy ..
a, \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7},x+y+z=92\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21},x+y+z=92\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
b, \(2x=3y=5z,x+y-z=95\)
\(\Rightarrow\dfrac{30x}{15}=\dfrac{30y}{10}=\dfrac{30z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6},x+y-z=95\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
+) \(\dfrac{x}{15}=5\Rightarrow x=75\)
+) \(\dfrac{y}{10}=5\Rightarrow y=50\)
+) \(\dfrac{z}{6}=5\Rightarrow z=30\)
c, Bn xem lại đề bài nha!
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}=\dfrac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}\)
\(=\dfrac{x+y+z}{2x+2y+2z}\)
\(TH1:x+y+z=0\)
⇒ \(\dfrac{x+y+z}{1}=0\)
⇒ \(x=y=z=0\)(loại vì trái với điều kiện đề bài )
\(TH2:z+y+z\)≠ 0
⇒ \(\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2.\left(x+y+z\right)}=\dfrac{1}{2}\)
Vậy \(x+y+z=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\) ⇒ \(2x=y+z+1\)⇒\(2x=y+z+2\left(x+y+z\right)=2x+3y+3z\)
⇒ \(3y+3z=0\) ⇒ \(y+z=0\) ⇒ \(2x=1\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\) ⇒ \(2y=x+z+1=x+z+2\left(x+y+z\right)=2y+3x+3z\)
⇒ \(3x+3z=0\) ⇒ \(x+z=0\) ⇒ \(2y=1\) ⇒ \(y=\dfrac{1}{2}\)
\(x+z=0\) ; \(x=\dfrac{1}{2}\)
⇒ \(z=0-\dfrac{1}{2}=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\) ; \(z=\dfrac{-1}{2}\)
Ta có : từ x - y - z =0
\(\Rightarrow x-z=y\) ; \(-z=y-x\) ; \(y+z=x\)
Lại có \(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(\Rightarrow B=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}\)
thay các hằng đẳng thức vừa tìm được vào B
\(\Rightarrow B=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)
vậy B = -1
tik mik nha !!!
Sửa đề như bên dưới:v
Với \(x+y+z=0\) dễ dàng có được \(x=y=z=0\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Suy ra: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}z+y=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\)
Ok rồi:v