K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Theo bài ra ta có 

(2*-1)^2008>=0 với mọi x

(y-2/5)>=0 với mọi y

|x+y-z|>=0 với mọi x; y; z

=>(3 cái trên) >=0 với mọi x y z

Với (đề bài)

<=>2x-1 mũ 2008=0

y-2/5=0

x+y-z=0

=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10

R kết luận

>= là lớn hơn hoặc bg

28 tháng 3 2018

(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0

=> ( 2x - 1) 2008 =0                     => 2x - 1 =0                => 2x = 1                       => x = 1/2 

     ( y - 2/5 )2008 = 0                        y - 2/5 = 0                   y =2/5                           y = 2/5

     |x + y -z | = 0                             x + y - z = 0                x + 2/5 - z = 0                1/2 - 2/5  -z = 0 

=>x = 1/2              =>x = 1/2

    y = 2/5                  y = 2/5

    5/10 - 4/10 = z       z = 1/ 10

                                                                 Vậy x = 1/2 ; y = 2/5 : z = 1/10

( nhớ cho mk nha )

28 tháng 3 2018

ta có: \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y-z\right|\ge0\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)

\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

KL: x= 1/2; y= 2/5; z=9/10

( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)

9 tháng 5 2019

Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y

|x+y-z| \(\ge\)

Suy ra 2x-1=0  nên x=\(\frac{1}{2}\)

y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)

và x+y-z=0    hay   \(\frac{1}{2}+\frac{2}{5}\)-z=0   suy ra z=\(\frac{9}{10}\)

25 tháng 8 2021

Vì \(\left(2x-1\right)^{2008}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2008}\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\forall x;y;z\)

mà \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

Đẳng thức xảy ra khi \(x=\frac{1}{2};y=\frac{2}{5};z=-\frac{9}{10}\)

25 tháng 8 2021

Vì \(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x,y,z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(\frac{1}{2};\frac{2}{5};-\frac{9}{10}\right)\)

10 tháng 4 2018

id như 1 trò đùa

xin lỗi -z chứ không phải +z

5 tháng 11 2016

vì ( 2x -1)2008>= 0        ( y-2/5)2008 >= 0    ( vì 2008 chẵn)

   / x +y-z/ >=0 

=> (2x-1)2008+(y-2/5)2008 +/x+y-z/ >= 0

dấu = xảy ra <=> đồng thời (2x-1)=0, (y-2/5) = 0 , /x+y-z/=0

<=> x=1/2 , y= 2/5 và z = -9/10

6 tháng 8 2016

a)

2009-|x-2009|=x

=> 2009-x=|x-2009|

=> 2009-x=|2009-x|

=> 2009-x=2009-x

vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài

b)

(2x-1)2008+(y-2/5)2008 +|x+y+z|=0

ta có: (2x-1)2008 luôn lớn hơn hoặc  bằng 0

(y-2/5)2008  luôn lớn hơn hoặc bằng 0

|x+y+z| luôn lớn hơn hoặc bằng 0

dấu "=" xảy ra khi 

2x-1=y-2/5=x+y+z=0

+2x-1=0=> 2x=1=> x=1/2

+y-2/5=0=> y=2/5

+x+y+z=0=> 1/2+2/5+z=0

=> z=-9/10