K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Leftrightarrow x=\frac{y}{8}=\frac{z}{27}\)

\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)Thay vào ta được:

\(2x^2+2\left(8x\right)^2-\left(27x\right)^2=1\)

\(\Leftrightarrow-559x^2=1\)

\(\Leftrightarrow x^2=\frac{-1}{559}\)

\(\Leftrightarrow\)Vô nghiệm.

29 tháng 2 2020

Phạm Nguyệt Minh Băng làm sai từ dòng 4 trên xuống

                       Bài giải

\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Rightarrow\text{ }x=\frac{y}{8}=\frac{z}{27}\)\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)

Thay vào đẳng thức ta có :

\(2x^2+2\left(8x\right)^2+\left(27x\right)^2=1\)

\(2x^2+128x^2+729x^2=1\)

\(x^2\left(2+128+729\right)=1\)

\(859x^2=1\)

\(x^2=\frac{1}{859}\)

\(\Rightarrow\text{ }x\in\varnothing\)

26 tháng 6 2018

Giải chi tiết hộ mình nha♥ Cám ơn các bạn !

26 tháng 6 2018

Em làm như sau nhé ;)

Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{64}=\frac{z}{216}\Rightarrow\frac{x^2}{\left(8\right)^2}=\frac{y^2}{\left(64\right)^2}=\frac{z^2}{\left(216\right)^2}\)

\(\Rightarrow\frac{2x^2}{2.8^2}=\frac{2y^2}{2.64^2}=\frac{z^2}{216^2}\)

\(\Leftrightarrow\frac{2x^2+2y^2-z^2}{2.8^2+2.64^2-216^2}=\frac{1}{-38336}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{1}{-38336}\Rightarrow x=-4792\\\frac{y}{64}=\frac{-1}{-38336}\Rightarrow y=-599\\\frac{z}{216}=\frac{-1}{38336}\Rightarrow z=-\frac{4792}{27}\end{cases}}\)

\(\Rightarrow\left(x;y\right)\in\left\{-4792;-599;-\frac{4792}{27}\right\}\)

15 tháng 8 2019

Ta có : \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) => \(\frac{3x}{8}=\frac{3y}{64}=\frac{z}{72}\)

=> \(\frac{x}{\frac{8}{3}}=\frac{y}{\frac{64}{3}}=\frac{z}{72}\)

=> \(\frac{x^2}{\frac{64}{9}}=\frac{y^2}{\frac{4096}{9}}=\frac{z^2}{5184}\)

=> \(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}=\frac{2x^2+2y^2-z^2}{\frac{128}{9}+\frac{8192}{9}-5184}=\frac{1}{-\frac{38336}{9}}=-\frac{9}{38336}\)

=> \(\hept{\begin{cases}\frac{2x^2}{\frac{128}{9}}=-\frac{9}{38336}\\\frac{2y^2}{\frac{8192}{9}}=-\frac{9}{38336}\\\frac{z^2}{5184}=-\frac{9}{38336}\end{cases}\Leftrightarrow}x,y,z\in\varnothing\)

Vậy không có số nào thỏa mãn

23 tháng 3 2018

saiucchegianroibucminhhum

21 tháng 9 2016

ai tra loi cau nay di

6 tháng 12 2021

Ta có: 3x/8= 3y/64= 3z/216

=> (3/8)x=(3/8)(y/8)=(3/8)(z/27)

=> x=y/8=z/27

=> x=k; y=8k; z=27k

Lại có: 2x^2 + 2y^2- z^2 = 1

2k^2 + 2(8k^2) - (27k)^2=1 

k^2(2+2*8^2-27^2)= 1

k^2*(-599)=1

k^2= 1/-599( vô lí)

Vậy x,y,z không có giá trị