K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Bài làm:
Ta có:

\(M=\frac{xy+y+5}{xy+y+4}=\frac{\left(xy+y+4\right)+1}{xy+y+4}=1+\frac{1}{xy+y+4}\)

Vậy để M là số nguyên thì \(\frac{1}{xy+y+4}\inℤ\)

=> \(1⋮\left(xy+y+4\right)\)

=> \(xy+y+4\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta xét 2 trường hợp sau:

*TH1
Nếu \(xy+y+4=-1\)

\(\Leftrightarrow x\left(y+1\right)=5\)

Ta có: \(5=1.5=\left(-1\right)\left(-5\right)\)nên ta xét các trường hợp sau:

+Nếu: \(\hept{\begin{cases}x=1\\y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}\left(tm\right)}}\)

+Nếu: \(\hept{\begin{cases}x=5\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}\left(tm\right)}}\)

+Nếu: \(\hept{\begin{cases}x=-1\\y+1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-6\end{cases}}}\)(tm)

+Nếu: \(\hept{\begin{cases}x=-5\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}\left(tm\right)}}\)

*TH2

Nếu \(xy+x+4=1\Leftrightarrow x\left(y+1\right)=-3\)

Ta có: \(-3=\left(-1\right).3=1.\left(-3\right)\)nên ta xét các trường hợp sau:

+Nếu: \(\hept{\begin{cases}x=1\\y+1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}\left(tm\right)}}\)

+Nếu: \(\hept{\begin{cases}x=-1\\y+1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}\left(tm\right)}}\)

+Nếu: \(\hept{\begin{cases}x=3\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\left(tm\right)}}\)

+Nếu: \(\hept{\begin{cases}x=-3\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)(tm)

Vậy ta có 8 cặp số (x;y) thỏa mãn để M nguyên là: (1;4) ; (5;0) ; (-1;-6) ; (-5;-2) ; (1;-4) ; (-1;2) ; (3;-2) ; (-3;0)

Học tốt!!!!


 


 

13 tháng 6 2020

bn lm sai đề r Đăng ạ

14 tháng 10 2019

a) Ta có: x^2 + y^2 + xy = 7 <=> (x+y)^2 -2xy+xy=7 <=> (x+y)^2 - xy =7 (1)
x+y+xy=5 (2)
Đặt S=x+y, P=xy, điều kiện: S^2>=4P, ta có hệ mới:
(1) => S^2 -P=7(3)
(2) => S+p=5 <=> P=5-S (4)
giải ra S,P rồi đối chiếu điều kiện suy ra x,y.

14 tháng 10 2019

Nguyễn Trúc Giang làm câu c kiểu j z bạn

avt2983753_60by60.jpglàm hộ e vs

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

NM
23 tháng 7 2021

ta có 

\(M=\frac{xy+x+4+1}{xy+x+4}=1+\frac{1}{xy+x+4}\) nguyên khi

\(\orbr{\begin{cases}xy+x+4=1\\xy+x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(y+1\right)=-3\\x\left(y+1\right)=-5\end{cases}}}\)

TH1:\(x\left(y+1\right)=-3\Rightarrow x\in\left\{-3,-1,1,3\right\}\text{ tương ứng }y\in\left\{0,2,-4,-2\right\}\)

TH2:\(x\left(y+1\right)=-5\Rightarrow x\in\left\{-5,-1,1,5\right\}\text{ tương ứng }y\in\left\{0,4,-6,-2\right\}\)

23 tháng 7 2021

Ta có \(M=\frac{xy+x+5}{xy+x+4}=\frac{xy+x+4+1}{xy+x+4}=1+\frac{1}{xy+x+4}\)

\(M\inℤ\Leftrightarrow1⋮xy+y+4\)

=> \(xy+y+4\inƯ\left(1\right)\)

=> \(xy+y+4\in\left\{1;-1\right\}\)

=> \(xy+y\in\left\{-3;-5\right\}\)

Khi xy + x = -3

=> x(y + 1) = -3 

Lập bảng xét các trường hợp 

x1-13-3
y + 1-33-11
y-42-20

Nếu xy + x = -5

=> x(y + 1) = -5

Lập bảng xét các trường hợp 

x1-55-1
y + 1-51-15
y-60-24

Vậy các cặp (x;y) thỏa mãn là (1;-4) ; (-1 ; 2) ; (3 ; -2) ; (-3 ; 0) ; (1 ;- 6) ; (-5 ; 0) ; (5 ; -2) ; (-1;4) 

25 tháng 1 2017

x = 0

y = 2

25 tháng 1 2017

kudo shinichi trình bày cách giải nha

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15