Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x - 1| + |x - 3| < x + 1
Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
=> x + 1 > 2
=> x > 1
+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2
Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn
+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1
=> 2x - x < 1 + 4
=> x < 5
Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài
b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)
=> |x + y + 2| + |2y + 1| = 0
\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)
Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
a)Ta thấy:\(\begin{cases}\left|x-y+2\right|\ge0\\\left|2y+1\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-y+2\right|+\left|2y+1\right|\ge0\) (1)
Mà \(\left|x-y+2\right|+\left|2y+1\right|\le0\) (2)
Từ (1) và (2) suy ra:
\(\left|x-y+2\right|+\left|2y+1\right|=0\)\(\Rightarrow\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x-y+2=0\\y=-\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x-\left(-\frac{1}{2}\right)+2=0\\y=-\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}\)
b) Ta có: \(\left|x-1\right|\ge0\)
\(\left|2-x\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=4>0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=x-1+2-x=4\)
\(\Rightarrow\left(x-x\right)-\left(1-2\right)=4\)
\(\Rightarrow0+1=4\) ( vô lí )
Vậy x không có giá trị thỏa mãn