Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+x-y=2\)
\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)
b) \(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Tương tự nha
c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Lời giải:
a)
\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)
\(\Leftrightarrow 3x^2+5y^2=0\)
Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$
$\Rightarrow x=y=0$
b)
\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)
\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)
\(\Leftrightarrow 16x^3-16x^3+16xy=32\)
\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)
Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$
Lời giải:
a)
\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)
\(\Leftrightarrow 3x^2+5y^2=0\)
Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$
$\Rightarrow x=y=0$
b)
\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)
\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)
\(\Leftrightarrow 16x^3-16x^3+16xy=32\)
\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)
Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
a ) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-\left(x^3+y^3\right)=0\)
\(\Leftrightarrow3x^2+5y^2=0\)
Do \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\5y^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow3x^2+5y^2\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2=0\\5y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(x=0;y=0\)
b )\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(-16\left(x^3-y\right)=32\)
\(\Leftrightarrow\left[\left(2x\right)^3-y^3\right]+\left[\left(2x\right)^3+y^3\right]-16x^3+16y=32\)
\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16y=32\)
\(\Leftrightarrow16y=32\)
\(\Leftrightarrow y=2\)
Vậy \(y=2\)