Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(9x^2+25-12xy+5y^2-10y\)
\(=\left(9x^2-12xy+4y^2\right)+\left(25+y^2-10y\right)\)
\(=9\left(x^2-\frac{4xy}{3}+\frac{4y^2}{9}\right)+\left(5-y\right)^2\)
\(=9\left(x-\frac{2y}{3}\right)^2+\left(5-y\right)^2\)
2.
a. \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(5x-5\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b. \(x^2-2x-24=0\)
\(\Leftrightarrow\left(x^2-6x\right)+\left(4x-24\right)=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
a) 9x2 + 25 - 12xy + 5y2 - 10y
= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )
= ( 3x - 2y )2 + ( y - 5 )2
b) 13x2 + 4x + 12xy + 4y2 + 1
= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )
= ( 3x + 2y )2 + ( 2x + 1 )2
c) x2 + 20 + 9y2 + 8x - 12y
= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )
= ( x + 4 )2 + ( 3y - 2 )2
\(A=12xy+6x-13x^2-9y^2+5\)
\(\Leftrightarrow A=-4x^2+12xy-9y^2-9x^2+6x-1+6\)
\(\Leftrightarrow A=-\left(4x^2-12xy+9y^2\right)-\left(9x^2-6x+1\right)+6\)
\(\Leftrightarrow A=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\right]-\left[\left(3x\right)^2-2.3x.1+1^2\right]+6\)
\(\Leftrightarrow A=-\left(2x-3y\right)^2-\left(3x-1\right)^2+6\)
Vậy GTLN của \(A=6\) khi \(\left\{{}\begin{matrix}2x-3y=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.\dfrac{1}{3}-3y=0\\x=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{9}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(A=12xy+6x-13x^2-9y^2+5\)
\(\Leftrightarrow A=-4x^2+12xy-9y^2-9x^2+6x-1+6\)
\(\Leftrightarrow A=-\left(4x^2-12xy+9y^2\right)-\left(9x^2-6x+1\right)+6\)
\(\Leftrightarrow A=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\right]- \left[\left(3x\right)^2-2.3x.1+1^2\right]+6\)
\(\Leftrightarrow A=-\left(2x-3y\right)^2-\left(3x-1\right)^2+6\)
Vậy GTLN của \(A=6\) khi \(\left\{{}\begin{matrix}2x-3y=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2.\dfrac{1}{3}-3y=0\\x=\dfrac{1} {3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{9}\\x=\dfrac{1} {3}\end{matrix}\right.\)
Bài 2: Tìm x
a) x2 - 6x + 5 = 0
<=> x2 - x - 5x + 5 = 0
<=> x(x - 1) - 5(x - 1) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy x ={1; 5}
b) x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x(x + 4) - 6(x + 4) = 0
<=> (x + 4)(x - 6) = 0
<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)
Vậy x ={-4; 6}
13x2 + 9y2 - 30x + 12xy + 25 = 0
<=> (9y2 + 12xy + 4y2) + (9x2 - 30x + 25) = 0
<=> (3y + 2x)2 + (3x - 5)2 = 0
Dễ thấy \(\left(3y+2x\right)^2\ge0;\left(3x-5\right)^2\ge0\forall x,y\)
nên \(\left(3y+2x\right)^2+\left(3x-5\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3y+2x=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{10}{9}\\x=\dfrac{5}{3}\end{matrix}\right.\)
Bạn xem lại đề