K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

3x+2y=5

<=>2x+x+2y=5

<=>(2x+2y)+x=5

<=>2(x+y)+x+y=5+y

<=>2(x+y)+(x+y)=5+y

<=>(x+y)(2+1)=5+y

<=>3(x+y)=5+y

\(\Leftrightarrow\frac{5+y}{x+y}=3\Leftrightarrow\frac{5}{x}=3\Leftrightarrow x=\frac{5}{3}\)

Thay x=5/3 vào=>y=0

Vi x;y E Z=>ko có (x;y) thỏa mãn

11 tháng 3 2016

mk cũng ko chắc nhé

13 tháng 3 2018

y/2=z/5=> 2y/4=z/5=18/9=2

=>y/2=2=> y=4

z/5=2=> z=10

3x=2y=> 3x=4=> x=4/3

13 tháng 3 2018

bạn có thể giải chi tiết hơn ko ? mk ko hiểu cho lắm

28 tháng 6 2017

Ta có:\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

          \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)

                   Từ (1) và (2) ta đc:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)

        

28 tháng 6 2017

3x=2y ;   7y=5z  

 <=> 21x=14y=10z

 tự làm nốt nhé

2 tháng 1 2020

                                                                Bài giải

\(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}\le0\)

Mà \(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+5\right)^{2008}\ge0\\\left(4z-3\right)^{2006}\ge0\end{cases}}\) \(\Rightarrow\) Chỉ xảy ra trường hợp : \(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}=0\)

\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+5\right)^{2008}=0\\\left(4z-3\right)^{2006}=0\end{cases}}\)            \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\)         \(\Rightarrow\hept{\begin{cases}3x=5\\2y=-5\\4z=3\end{cases}}\)          \(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)

\(\Rightarrow\text{ }x=\frac{5}{3}\text{ , }y=-\frac{5}{2}\text{ , }z=\frac{3}{4}\)

22 tháng 4 2018

phải cho điều kiện là x,y thuộc Z

xy + 3x - 2y - 7 = 0

x ( y + 3 ) - ( 2y + 6 ) - 1 = 0

x . ( y + 3 ) - 2 . ( y + 3 ) = 1

( x - 2 ) . ( y + 3 ) = 1

\(\Rightarrow\)x - 2, y + 3 thuộc Ư ( 1 ) = { 1 ; -1 } 

Sau đó cậu lập bảng tìm x,y

15 tháng 7 2015

a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)

suy ra :

\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)

\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)

\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)

bạn xem lại đề ra số hơi xấu

2 tháng 8 2017

Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)  (1)

            \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\) (2)

Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Nên : \(\frac{x}{10}=2\Rightarrow x=20\)

         \(\frac{y}{15}=2\Rightarrow y=30\)

           \(\frac{z}{21}=2\Rightarrow z=42\)

Vậy ..................

2 tháng 8 2017

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) ; \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{x}{10}=\frac{y}{15}\)(1) 

            \(\frac{y}{5}=\frac{z}{7}=\frac{y}{15}=\frac{z}{21}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Đặt \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=k\)=> x = 10k ; y = 15k ; z =21k 

x - y + z =32 => 10k - 15k + 21k = 32 => 16k = 32 => k = 2

Với k = 2 => x = 2 . 10 = 20 

                     y = 2 . 15 = 30 

                     z = 2 . 21 = 42

Vậy ....