K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

viết lại đề :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

vì vai trò của x,y là như nhau,ko mất tính tổng quát,ta giả sử: \(1\le x\le y\left(do..x;y\inℕ^∗\right)\)

thay x,y bởi x ta có:\(\frac{1}{x}+\frac{1}{x}\ge\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(do \(x\le y\) nên theo TC của phân số thì \(\frac{1}{x}+\frac{1}{x}\ge\frac{1}{x}+\frac{1}{y}\))

\(\Leftrightarrow\frac{2}{x}\ge\frac{1}{3}\Leftrightarrow x\le6\Rightarrow1\le x\le6\)

ta lại có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{1}{x}>\frac{1}{3}\Leftrightarrow3< x\le6\)

ta có 3TH:

\(x=4\Leftrightarrow\frac{1}{4}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{1}{y}=\frac{1}{12}\Leftrightarrow y=12\left(TM\right)\)

\(x=5\)bạn thay vào thì y=2/15(ko TM)

\(x=6\),ta sẽ tìm đc y=6(TM)

vậy(x;y)cần tìm là  (4;12),(6;6) và (12;4)

25 tháng 6 2017

Sửa đề bài: \(2^x=8^{y+1}\)và  \(9^y=3^{x-9}\)

Có: \(2^x=8^{y+1}\)

\(\Leftrightarrow2^x=\left(2^3\right)^{y+1}\)

\(\Leftrightarrow2^x=2^{3y+3}\)

\(\Leftrightarrow x=3y+3\)   (1)

Lại có: \(9^y=3^{x-9}\)

\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)

\(\Leftrightarrow3^{2y}=3^{x-9}\)

\(\Leftrightarrow2y=x-9\)    (2)

Thay (1) vào (2), ta có:

=> 2y = 3y + 3  - 9

=> 2y = 3y - 6

=> 2y - 3y = -6

=> -1y = -6

=> y = 6 \(\left(y\in N\right)\)

Từ x = 3y + 3 (theo điều 1)

=> x = 3.6 + 3 = 21 \(\left(x\in N\right)\)

Vậy x + y = 21 + 6 = 27

25 tháng 6 2017

Bạn huy sai rồi::::2x chứ ko phải 2x

6 tháng 11 2017

1.  Ta có \(x^3+6x^2-19x-24=x^3+x^2+5x^2+5x-24x-24\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)-24\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x-24\right)\)

\(=\left(x+1\right)\left(x+8\right)\left(x-3\right)\)

Đặt x - 3 = k, biểu thức trở thành A  =  k(k + 4)(k + 11)

Ta thấy ngay A chứa ít nhất một số nhân tử là số chẵn nên A chia hết cho 2. Ta chỉ cần chứng minh A chia hết 3.

Thật vậy, nếu k = 3a thì A chia hết cho A.

Nếu k = 3a + 1 thì k + 11 = 3a + 1 + 11 = 3a + 12 chia hết 3

Nếu k = 3a + 2 thì k + 4 = 3a + 2 + 4 = 3a + 6 chia hết 3

Vậy A chia hết cho 2 và 3 mà (2;3) = 1 nên A chia hết cho 6.

2.  \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)

\(\Leftrightarrow y^2+2x^2+2=2xy+2y\)

\(\Leftrightarrow y^2+2x^2+2-2xy-2y=0\)

\(\Leftrightarrow2y^2+4x^2+4-4xy-4y=0\)

\(\Leftrightarrow\left(y^2-4y+4\right)+\left(4x^2-4xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2\right)^2+\left(2x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)^2=0\\\left(2x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\2x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy x = 1, y = 2

3 tháng 2 2017

Với x = 0 thì \(y^2=2\) (loại)

Với \(x\ge1\) thì 

\(2^x=y^2-1=\left(y-1\right)\left(y+1\right)\)

Ta thấy (y - 1) và (y + 1) là 2 số chẵn liên tiếp. Mà \(2^x\) chỉ có ước nguyên tố là 2 nên (y - 1) và (y + 1) cũng chỉ có ước nguyên tố là 2.

Từ đây ta suy ra được:

\(\hept{\begin{cases}y-1=0\\y+1=2\end{cases}}\) hoặc \(\hept{\begin{cases}y-1=2\\y+1=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=1\left(l\right)\\y=3\end{cases}}\)

\(\Rightarrow x=3\)

3 tháng 2 2017

2^x + 1 = y^2 
2^x = y^2-1 
2^x =(y-1)(y+1) 

=> y+1 = 2^x/(y-1) 
Do y+1 nguyên => y-1 là ước của 2^x, chỉ có thể có dạng 2^n với n>=1 hoặc y-1 =1 (loại) 

=> y-1 có dạng 2^n => y-1 = 2^n 
=> y+1 = 2^n +2 

=> 2^x = 2^n(2^n+2)= 2^(n+1).[2^(n-1) +1] (*) 

Nếu n> 1 thì 2^(n-1) +1 là số lẻ trong khi 2^x chẵn => (*) Vô nghiệm 
Với n=1 => y =3 => x= 3

24 tháng 3 2019

câu b  vế phải = 0 chứ bạn?

24 tháng 3 2019

đề thầy mình viết thế ó bạn