Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(x^2-2xy+2y^2+2y+1=0\)
\(x^2-2xy+y^2+y^2+2y+1=0\)
\(\left(x-y\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-y\right)^2\ge0\) Và \(\left(y+1\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2\ge0\)
Dấu = xảy ra khi \(x-y=0\) và \(y+1=0\)
\(\Rightarrow x-y+y+1=0+0\)
\(x+1=0\Rightarrow x=-1\)
Ta có \(y+1=0\Rightarrow y=-1\)
Vậy \(x=-1\) và \(y=-1\)
Do \(x,y,z\inℤ\)
nen tu gia thiet suy ra
\(x^2+4y^2+z^2-2xy-2y+2z\le-1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2\le1\)
mat khac
\(\hept{\begin{cases}\left(y-1\right)^2+2y^2>0\\\left(x-y\right)^2+\left(z+1\right)^2\ge0\end{cases}}\)
nen \(\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2=1\)
den day ban lap bang cac gia tri se tim duoc \(\left(x,y,z\right)=\left(0,0,-1\right)\)
\(1.y^2+2xy-7x-12=0\Leftrightarrow4y^2+8xy-28x-48=0\)
\(\left(2y\right)^2-7^2+4x\left(2y-7\right)+1=\left(2y-7\right)\left(2y+7+4x\right)=-1\)
\(\hept{\begin{cases}2y-7=-+1\\2y+7+2x=+-1\end{cases}}\)vo nghiem nguyên
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
x2+2y2+2xy-4y+4=0
(x2+2xy+y2)+ (y2-4y+4) = 0
(x+y)2 + (y-2)2 = 0
Với mọi x, y ta luôn có
(x+y)2 >= 0
(y-2)2 >= 0
do đó (x+y)2 + (y-2)2 >= 0
Dấu = xảy ra khi
x+y=0 và y-2=0
=> x=-2 và y = 2
Thay vào B rồi tính ra B= -4
Ta có:
\(x^2+2y^2+2xy-4y+4=0\)
\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)
\(\left(x+y\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Thay x= -2, y=2 vào biểu thức B, ta đc:
\(B=\left(4+4+48\right)\div\left(-2-2\right)\)
\(B=56\div\left(-4\right)=-8\)
Vậy B= -8 tại x=-2, y=2
\(x^2+2xy+y^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}+y^2-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2=\frac{9}{4}-y^2\)
Do \(\left(x+y+\frac{7}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-y^2\ge0\Rightarrow y^2\le\frac{9}{4}\)
Mà y nguyên \(\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-5\end{matrix}\right.\)
- Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) ko có x nguyên t/m (loại)
- Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) ko có x nguyên t/m (loại)