K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\)\(x=-y=z=1\)

\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)

... 

10 tháng 12 2017

bạn ơi hình như có chút sai đề

23 tháng 4 2017

Bạn CM x=y=z=1

Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2

Cuối cùng bạn sẽ kết luận:

Vì 1/2 ≤ 1/2

Nên ...(biểu thức)...≤1/2

23 tháng 4 2017

CM x=y=z kiểu gì vậy???

21 tháng 8 2020

\(3x^2+y^2+4xy-8x-2y=0\)

\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)

\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)

\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)

\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)

Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn

Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

a/

$x+y=xy$

$\Leftrightarrow xy-x-y=0$

$\Leftrightarrow x(y-1)-(y-1)=1$

$\Leftrightarrow (y-1)(x-1)=1$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:

TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)

TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)

 

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

b/

$5xy-2y^2-2x^2=-2$

$\Leftrightarrow 2x^2-5xy+2y^2=2$

$\Leftrightarrow (2x-y)(x-2y)=2$

Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$

$\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2$

$\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1$

$\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1$

$\Rightarrow x=-1; y=0$