Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\)\(x=-y=z=1\)
\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)
...
Bạn CM x=y=z=1
Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2
Cuối cùng bạn sẽ kết luận:
Vì 1/2 ≤ 1/2
Nên ...(biểu thức)...≤1/2
\(3x^2+y^2+4xy-8x-2y=0\)
\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)
\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)
\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)
\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)
Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn
Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)
a/
$x+y=xy$
$\Leftrightarrow xy-x-y=0$
$\Leftrightarrow x(y-1)-(y-1)=1$
$\Leftrightarrow (y-1)(x-1)=1$
Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:
TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)
TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)
b/
$5xy-2y^2-2x^2=-2$
$\Leftrightarrow 2x^2-5xy+2y^2=2$
$\Leftrightarrow (2x-y)(x-2y)=2$
Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$
$\Rightarrow x=0; y=-1$
TH2: $2x-y=-1, x-2y=-2$
$\Rightarrow x=0; y=1$
TH3: $2x-y=2, x-2y=1$
$\Rightarrow x=1; y=0$
TH4: $2x-y=-2, x-2y=-1$
$\Rightarrow x=-1; y=0$