K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

c) \(^{x^2}\)+xy-x-2=0

18 tháng 9 2018

bn vào trang wed này mik chỉ cho, cứ nhắn tin cho mik đi rồi mik sẽ ns.

6 tháng 9 2020

ĐKXĐ : x,y ∈ Z

a) xy + 3x - 2y - 7 = 0

<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0

<=> ( y + 3 )( x - 2 ) = 1

Ta có bảng sau :

x-21-1
y+31-1
x31
y-2-4

Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }

b) xy - x + 5y - 7 = 0

<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0

<=> ( y - 1 )( x + 5 ) = 2

Ta có bảng sau :

x+51-12-2
y-12-21-1
x-4-6-3-7
y3-120

Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }

c) x + 2y = xy + 2

<=> x + 2y - xy - 2 = 0

<=> x( 1 - y ) - 2( 1 - y ) = 0

<=> ( x - 2 )( 1 - y ) = 0

<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy ( x ; y ) = ( 2 ; 1 )

6 tháng 9 2020

à cho mình sửa ý c) một chút nhé

( x - 2 )( 1 - y ) = 0

Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R

Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R

Bài 4: 

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

=>3x=42

hay x=14

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>-2x+8=0

=>-2x=-8

hay x=4

c: \(x\left(x-2\right)+\left(x-2\right)=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

d: \(5x\left(x-3\right)-x+3=0\)

=>5x(x-3)-(x-3)=0

=>(x-3)(5x-1)=0

=>x=3 hoặc x=1/5

e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)

\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)

=>-14x=28

hay x=-2

f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)

=>x+2=0

hay x=-2

18 tháng 11 2018

Violympic toán 8 Violympic toán 8

18 tháng 11 2018

Bài 1:

a) x^3 + 2x^2 + x = x.(x^2+2x+1) = x.(x+1)^2

b) xy + y^2 - x - y

= y.(x+y) - (x+y)

= (x+y).(y-1)


13 tháng 9 2018

Ta có: \(\left\{{}\begin{matrix}x+y+z=0\\xy+yz+zx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\2\left(xy+yz+zx\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=0\\2xy+2yz+2xz=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz=0\)

\(\Rightarrow x^2+y^2+z^2=0\Rightarrow\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\ge0\)

\("="\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

\(\Rightarrow x=y=z=0\Rightarrow dpcm\)

13 tháng 9 2018

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^z+z^2+0=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\Leftrightarrow x=y=z=0\)

b) Bằng chứ ^^
\(\left(x+y\right)^2=x^2+2xy+y^2=4xy\)

\(\Leftrightarrow x^2-2xy+y^2=0\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

14 tháng 11 2017

2)

a) \(3x \left(x^2-4\right)=0 \)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy x=0 ; x=2 ; x=-2

b) \(2x^2-x-6=0\)

\(\Leftrightarrow2x^2-4x+3x-6=0\)

\(\Leftrightarrow\left(2x^2-4x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy x=2 ; \(x=\dfrac{-3}{2}\)

19 tháng 11 2017

Câu 1 .

a) x3 + x2 + x

= x( x2 + x + 1)

b) xy + y2 - x - y

= x( y - 1) + y( y - 1)

= ( y - 1)( x + y)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????