Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)
Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)
=>\(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)
Vậy x=4-y ; y=4-x
áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
8y = 2x+8 => 23y = 2x+8 => 3y = x+8 (1)
3x = 9y-1 => 3x = 32y-2 => x = 2y-2 (2)
Thay (2) vào (1) ta có:
3y = 2y-2+8 => y=6
=> x=2.6-2=10
Vậy x=10,y=6