Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
12 - 3x+4xy=8y
<=>8y+3x-4xy=12
<=>(8y-4xy)+3x=12
<=>4y(2-x) + 3x=12
<=>4y(2-x)-6+3x=12
<=>4y(2-x)-3(2-x)=12
<=>(4y-3)(2-x)=12
Ta có bảng sau
4y-3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y | ||||||||||||
2-x | 12 | 1 | -12 | -1 | 3 | 4 | -4 | -3 | 6 | 2 | -6 | -2 |
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
Bài 1:
|x-2|=4-x
ĐK: \(4-x\ge0\Leftrightarrow x\le4\)
Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)
Vậy x = 3
Bài 2:
a, sao có z
b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)
Mà |2017-x|+|y-x+2018|=0
\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)
Vậy x=2017,y=1
c, giống b
Lời giải:
Với mọi $x,y\in\mathbb{Z}$ thì $4x+8y$ là số chẵn. Mà $2017$ lẻ nên không tồn tại số nguyên $x,y$ nào thỏa mãn $4x+8y=2017$