K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

PT <=> \(\left(x+y\right)^2=xy\left(xy+1\right)\)

Đến đây khó rồi :v ai giúp với:P

27 tháng 8 2019

Không mất tính tổng quát,giả sử \(\left|x\right|\le\left|y\right|\Rightarrow x^2\le y^2\)

Ta có:\(x^2+xy+y^2\le3x^2\)

Khi đó:\(3x^2\ge x^2y^2\Rightarrow y^2\le3\Rightarrow y\in\left\{1;-1;0\right\}\)

Với \(y=0\Rightarrow x=0\)

Với \(y=1\Rightarrow x^2+x+1=x^2\Rightarrow x=-1\)

Với \(y=-1\Rightarrow x^2-x+1=x^2\Rightarrow x=1\)

Vậy \(\left(x;y\right)=\left(1;-1\right)=\left(-1;1\right)=\left(0;0\right)\)

Các bác check hộ cháu ạ.

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

2 tháng 4 2017

bạn giúp mình đi làm ơn

mình đang ko biết cách làm

7 tháng 12 2017

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)

b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)

c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)

d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9