K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

ukm......................

5 tháng 8 2015

Khó quá mik ko nghĩ ra

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

24 tháng 10 2017

 Với mỗi số tự nhiên m và n ta có:  \(x^n:x^m\) khi và chỉ khi \(n\ge m\).
a) \(x^4:x^n\) nên \(n\le4\). Do n là số tự nhiên nên \(n=0,1,2,3,4\).
b) { \(n\in N\)\(n\ge3\)}.
c) { \(n\in N\)\(n\ge2\)}.
d) \(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\)\(\Leftrightarrow n\ge4\).

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

10 tháng 9 2016

có gì pm

buồn ngủ

21 tháng 2 2016

Đặt  \(A=x^3+y^3+z^3+axyz\)

Gọi  \(Q\)  và  \(r\) lần lượt là thương và dư của phép chia   \(A=x^3+y^3+z^3+axyz\)  cho   \(\left(x+y+z\right)\)

Thực hiện phép chia   \(A=x^3+y^3+z^3+axyz\)   \(:\)   \(\left(x+y+z\right)\), ta được:

\(Q=x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\)   và   \(r=-yz\left(x+z\right)\left(a+3\right)\)

Khi đó,  \(A=x^3+y^3+z^3+axyz=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\right]+\left[-yz\left(x+z\right)\left(a+3\right)\right]\)

Muốn  \(A\)  chia hết cho  \(x+y+z\)  thì đa thức dư phải đồng nhất bằng  \(0\), tức  \(r=0\)

Hay  \(-yz\left(x+z\right)\left(a+3\right)=0\)  (với mọi  \(x,\)  \(y,\)  \(z\in Q\) )

Do đó,  \(a+3=0\)  \(\Rightarrow\)  \(a=-3\)

Vậy, hằng số  \(a\)  cần tìm là  \(-3\)

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)