K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Rightarrow8\left(x-2009\right)^2\le25\)

\(\Leftrightarrow\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow0\le\left(x-2009\right)^2\le3\)

\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)

+) Trường hợp 1 :

\(\Rightarrow\left(x-2009\right)^2=0\)

\(\Rightarrow x=2009\)

\(\Rightarrow y=5\)

\(\Leftrightarrow\hept{\begin{cases}x=2009\\y=5\end{cases}}\)

+) Trường hợp 2 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x-2009=1\)

\(\Rightarrow x=2010\)

\(\Rightarrow25-y^2=8\)

\(\Rightarrow y^2=17\) (loại)

+) Trường hợp 3 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x=2008\)

\(\Rightarrow25-y^2=8\)(loại)

Vậy ......

\(\)

2 tháng 11 2016

2 a) x2 + 4x + 5

= x2 + 2.x.2 + 22 + 1

=(x + 2)2 +1

vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x

suy ra A luôn lớn hơn hoặc bằng 1

dấu '=' xảy ra khi x+2=0 suy ra x=-2

vậy GTNN của A là 1 khi x= -2

b)x2 + y2 - 4x +6y +13=0

(x2 - 4x +4)+(y2 + 6y +9)=0

(x-2)2 + (y+3)2 =0

(x - 2)2 lớn hơn hoặc bằng 0 với mọi x

(y+3)2 lớn hơn hoặc bằng 0 với mọi y

nên để (x-2)2 + (y+3)2 =0

thì x-2=0 và y+3=0

x=2; y= -3

 

28 tháng 7 2017

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Áp dụng vào bài

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2

Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)

\(\Rightarrow2y+x+z=2k+2q+2\)

\(\Leftrightarrow x+z=2k+2q+2-2y\)

\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)

Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2

Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)

Vậy: \(A⋮6\forall x,y,z\in Z\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải

a)

\(2(x^3+y^3)-3(x^2+y^2)=2(x+y)(x^2-xy+y^2)-3(x^2+y^2)\)

\(=2(x^2-xy+y^2)-3(x^2+y^2)\)

\(=-x^2-y^2-2xy=-(x^2+2xy+y^2)=-(x+y)^2=-1\)

b) \(\frac{(x+5)^2+(x-5)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\frac{2(x^2+25)}{x^2+25}=2\)

c) \(\frac{(2x+5)^2+(5x-2)^2}{x^2+1}=\frac{(4x^2+25+20x)+(25x^2+4-20x)}{x^2+1}\)

\(=\frac{29x^2+29}{x^2+1}=\frac{29(x^2+1)}{x^2+1}=29\)

Vậy các biểu thức đã cho có giá trị không phụ thuộc vào $x,y$

6 tháng 8 2018

thanks bạn nha

14 tháng 8 2019
https://i.imgur.com/FQmMYuc.jpg
8 tháng 2 2017

Bài 1:

Đặt x-2009=y. Khi đó phương trình đã cho trở thành:

\(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)

\(\Leftrightarrow4y^2-4y-15=0\)

\(\Leftrightarrow\)(2y-5).(2y+3)=0

\(\Leftrightarrow\left[\begin{matrix}y=2,5\\y=-1,5\end{matrix}\right.\)

Thay y=x-2009. Ta được: \(\left[\begin{matrix}x=2009+2,5=2011,5\\x=2009-1,5=2007,5\end{matrix}\right.\)

Vậy x=2011,5 hoặc x=2007,5

27 tháng 1 2021

Bạn giải thích hộ mình dấu <=> thứ 1 được không?? =))