Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm đều giống nhau, mình làm câu a, các câu còn lại bạn tự giải tương tự:
\(x^2+\left(3y-1\right)x+2y^2-y+3=0\) (1)
Coi đây là pt bậc 2 theo ẩn x với y là tham số
\(\Delta=\left(3y-1\right)^2-4\left(2y^2-y+3\right)=\left(y-1\right)^2-12\)
Để pt có nghiệm nguyên \(\Rightarrow\Delta=k^2\Rightarrow\left(y-1\right)^2-12=k^2\)
\(\Leftrightarrow\left(y-1\right)^2-k^2=12\Leftrightarrow\left(y-1-k\right)\left(y-1+k\right)=12\)
Đến đây giải pt nguyên như bình thường, nhưng 12 có rất nhiều ước nguyên (có 2.(2+1)(1+1)=12 ước nguyên) nên ta thêm bước nhận xét do \(\left(y-1-k\right)+\left(y-1-k\right)=2\left(y-1\right)\) chẵn nên luôn cùng tính chẵn lẻ, vậy ta chỉ cần xét các trường hợp \(\left(2;6\right);\left(-2;-6\right);\left(6;2\right);\left(-6;-2\right)\)
Ví dụ 1 trường hợp, bạn tự làm 3 trường hợp còn lại:
\(\left\{{}\begin{matrix}y-1-k=2\\y-1+k=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\k=2\end{matrix}\right.\)
Thế \(y=5\) vào (1): \(x^2+14x+48=0\Rightarrow\left[{}\begin{matrix}x=-6\\x=-8\end{matrix}\right.\)