Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
\(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)
\(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)
\(=\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow x=1;y=\frac{3}{2};z=-2\)
Ta có:
x2+4y2+z2-2x-12y-4z-14=0
x2-2x+1+z2-4z+4+4y2-12y+9=0
(x-1)2+(z-2)2+(2y-3)2=0
Tổng 3 số không âm bằng 0
<=> x-1=0 và z-2=0 và 2y-3=0
<=> x=1 và z=2 và y=3/2
Bài 1:
x3+y3=152=> (x+y)(x2-xy+y2)=152
Mà x2-xy+y2=19
=> 19(x+y)=152=> x+y=8
Ta cũng có x-y=2
=> x=5;y=3
Bài 2:
x2+4y2+z2=2x+12y-4z-14
=> x2+4y2+z2-2x-12y+4z+14=0
=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0
=> (x+1)2+(2y-3)2+(z+2)2=0
=> (x+1)2=(2y-3)2=(z+2)2=0
=> x=-1;y=3/2;z=-2
Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)
1) \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow x^2-2x+1+\left(2y\right)^2-2.2y.3+9+z^2+2.z.2+4=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\left(2y-3\right)^2\ge0\) với mọi y
\(\left(z+2\right)^2\ge0\) với mọi z
Mà \(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\2y=3\\z=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
Vậy x = 1 ; y = 3/2 ; z = -2
2) a)
Ta có:
\(103n^2+121n+70\)
\(=103n^2-103n+224n-224+294\)
\(=103n\left(n-1\right)+224\left(n-1\right)+294\)
\(=\left(n-1\right)\left(103n+224\right)+294\)
Vì ( n - 1 )( 103n + 224 ) chia hết cho n - 1
=> Để 103n2 + 121n + 70 chia hết cho n - 1
=> 294 phải chia hết cho n - 1
=> n - 1 thuộc Ư(294)
=> n - 1 thuộc { 2 ; -2 ; 3 ; -3 ; 7 ; -7 ; 49 ; -49 ; 6 ; - 6 ; 21 ; -21 ; 147 ; -147 ; 14 ; -14 ; 98 ; -98 ; 1 ; -1 ; 294 ; -294 }
=> n thuộc { 3 ; -1 ; 4 ; -2 ; 8 ; -6 ; 50 ; -48 ; 7 ; -5 ; 22 ; -20 ; 148 ; -146 ; 15 ; -13 ; 99 ; -97 ; 2 ; 0 ; 295 ; -293 }
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)
\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)
\(\Rightarrow x=1;y=-2;z=-1\)
<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0
<=>(x-1)2+3(y+2)2+2(z+1)2=0
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)
Lời giải:
$x^2+4y^2+z^2=2x+12y-4z-14$
$\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0$
$\Leftrightarrow (x^2-2x+1)+(4y^2-12y+9)+(z^2+4z+4)=0$
$\Leftrightarrow (x-1)^2+(2y-3)^2+(z+2)^2=0$
Vì $(x-1)^2\geq 0; (2y-3)^2\geq 0; (z+2)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-3)^2=(z+3)^2=0$
$\Rightarrow x=1; y=\frac{3}{2}; z=-3$