K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

5 tháng 9 2017

dễ mà tự suy nghĩ và dùng máy tính bấm là ra thôi

17 tháng 9 2018

a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)

\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

17 tháng 9 2018

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3-x^3-y^3\right]+3z\left(x+y\right)\left(x+y+z\right)\)

\(=3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

d) \(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\left(x^2+y^2-5\right)^2-\left[\left(2xy\right)^2+2.2xy.4+16\right]\)

\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)

\(=\left(x^2-2xy+y^2-9\right)\left(x^2+2xy+y^2-1\right)\)

\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)

\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)

e) \(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)

\(=\left(x^2+4y^2-5\right)^2-\left[4\left(xy+1\right)\right]^2\)

\(=\left(x^2+4y^2-5\right)-\left(4xy+4\right)^2\)

\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)

\(=\left(x^2+4y^2-4xy-9\right)\left(x^2+4y^2+4xy-1\right)\)

\(=\left[\left(x-2y\right)^2-3^2\right]\left[\left(x+2y\right)^2-1\right]\)

\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)

f) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)

\(=\left(x-y+5-1\right)^2\)

\(=\left(x-y+4\right)^2\)

a: \(\Leftrightarrow x^3+8-x^3-3x=5\)

=>3x=3

hay x=1

b: \(\Leftrightarrow x^3-8-x\left(x^2-1\right)=8\)

\(\Leftrightarrow x^3-8-x^3+x=8\)

=>x=16

c: =>x2+2=3

=>x2=1

=>x=1 hoặc x=-1

f: \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

=>x=1 và y=-3

1 tháng 8 2017

\(1.\)

\(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xyz^2\)

\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)

\(=\left(x^2z-xyz\right)\left(x-z\right)\)

\(=xz\left(x-y\right)\left(x-z\right)\)

\(2.\)

\(x^2-\left(a+b\right)xy+aby^2\)

\(=x^2-axy-bxy+aby^2\)

\(=x^2-bxy-axy+aby^2\)

\(=x\left(x-by\right)-ay\left(x-by\right)\)

\(=\left(x-ay\right)\left(x-by\right)\)

\(3.\)

\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=abx^2+b^2xy+a^2xy+aby^2\)

\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)

\(=\left(ax+by\right)\left(bx+ay\right)\)

\(4.\)

\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)

\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)

\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)

\(5.\)

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)

\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(6.\)

\(16x^2-40xy+2y^2\)

\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)

\(=\left(4x-5y\right)^2\)

\(7.\)

\(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)

\(=\left(5x^2+y\right)^2\)

\(8.\)

\(-16x^4y^6-24x^5y^5-9x^6y^4\)

\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)

\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)

\(=\left(4x^2y^3+3x^3y^2\right)^2\)

\(9.\)

\(16x^2-4y^2-8x+1\)

\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)

\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)

\(=\left(4x+1\right)^2-\left(2y\right)^2\)

\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)

\(10.\)

\(49x^2-25+42xy+9y^2\)

\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)

\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)

\(=\left(7x+3y\right)^2-5^2\)

\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

1 tháng 4 2020

thôi mik làm đc r

1 tháng 4 2020

dễ thế mà::))))hum

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.