K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+2y^2+2xy-14y+49=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\)

Dấu '=' xảy ra khi y=7 và x=-7

12 tháng 9 2021

Không tắt mấy bước trên được không í ạ

 

18 tháng 1 2016

tic cho mình hết âm nhé

25 tháng 2 2017

Ta có:

\(5x+14y-2xy=35\)

\(\Leftrightarrow\left(5x-35\right)+\left(14y-2xy\right)=0\)

\(\Leftrightarrow\left(7-x\right)\left(2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=2,5\end{cases}}\)

Thế x = 7 vào cái còn lại ta được

\(7^2-4y^2=24\)

\(\Leftrightarrow y^2=\frac{25}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=-\frac{5}{2}\end{cases}}\)

Thế y = 2,5 vào cái còn lại ta được

\(x^2-4.2,5^2=24\)

\(\Leftrightarrow x^2=49\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
29 tháng 7 2019

toan lop 8 nha minh kik nham

2 tháng 8 2016

mk chỉ nhớ là x = 3 ; y =2 thôi à 

3 tháng 8 2016

Mình cần cả trình bày nữa cơ

Bạn vô link này tham khảo thêm nha:

Câu hỏi của Lovely Sweetheart Princess - Toán lớp 7 - Học toán với OnlineMath

27 tháng 10 2017

Đề \(\Leftrightarrow x^2-2xy+y^2+y^2+2y+1+x^2+2x+1-x^2+2x-1+12=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12=0\left(1\right)\)

Ta có: \(\left(x-y\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+1\right)^2\ge0\ge-\left(x-1\right)^2\)

nên \(\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12>12>0\)

\(\Rightarrow\left(1\right)\)vô lí.

Vậy \(S=\varnothing\)

14 tháng 9 2016

a)xy-7x-2y=15

=>x(y-7)-2y=15

=>x(y-7)-2y+14=15+14

=>x(y-7)-2(y-7)=29

=>(x-2)(y-7)=29

=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}

Với x-2=1 =>x=3 <=> y-7=29 =>y=36

Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22

Với x-2=29 =>x=31 <=>y-7=1 =>y=8

Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6

Vậy .....

 

 

14 tháng 9 2016

b)x2+5x-2xy-10y-11=0

<=>x2+5x-2xy-10y=11

<=>(x2-2xy)+(5x-10y)=11

<=>x(x-2y)+5(x-2y)=11

<=>(x+5)(x-2y)=11

=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}

Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)

Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)

Vậy ko có giá trị x,y nguyên nào thỏa mãn

 

16 tháng 4 2019

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)(1)

Vì tổng bình phương của các số luôn lớn hơn hoặc bằng 0, mà theo (1) ta có :

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}}\)