K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

\(x^2-2xy+2y^2+2y+1=0\)

\(x^2-2xy+y^2+y^2+2y+1=0\)

\(\left(x-y\right)^2+\left(y+1\right)^2=0\)

 \(\left(x-y\right)^2\ge0\) Và  \(\left(y+1\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2\ge0\)

Dấu  ​=  xảy ra khi   \(x-y=0\)  và  \(y+1=0\)

\(\Rightarrow x-y+y+1=0+0\)

\(x+1=0\Rightarrow x=-1\)


Ta có   \(y+1=0\Rightarrow y=-1\)

Vậy \(x=-1\) và  \(y=-1\)

 

13 tháng 12 2020

chào bạn

30 tháng 6 2019

1) x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

\(\Leftrightarrow\)[ x2 - 2x.( 2y + 1 ) + 4y2 + 4y +1 ] - 4y2 - 4y - 1 + 7y- 2y +4 = 0

\(\Leftrightarrow\) [ x2 - 2x.( 2y +1 ) + ( 2y +1 )2 ] + 3y2 - 6y +3 = 0

\(\Leftrightarrow\) ( x - 2y - 1 )2 + 3.( y2 - 2y + 1 ) = 0

\(\Leftrightarrow\)( x - 2y - 1 )2 + 3.( y - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y-1=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2y+1\\y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy x = 3 , y = 1 thì x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

2) 11x2 + y2 - 6xy - 14x + 2y +9 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + 9x2 - 6x +1 ] + 2x2 - 8x + 8 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + ( 3x - 1 )2 ] + 2.( x2 - 4x + 4 ) = 0

\(\Leftrightarrow\)( y - 3x + 1 )2 + 2.( x - 2 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(y-3x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y-3x+1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=3x-1\\x=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy x = 2 , y = 5 thì 11x2 + y2 - 6xy - 14x + 2y + 9 = 0

30 tháng 6 2019

Cảm ơn bạn

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

25 tháng 7 2017

Đặt \(xy-12x+15y\)là (*)

Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)

Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)

Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)

Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)

\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)

\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)

Với \(x=3;y=2\)thay vào (*)  ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)

Với \(x=5;y=3\)thay vào (*)  ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)

Vậy .....

17 tháng 4 2018

2314654564

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)