Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)
Xét y = 0 => PT vô nghiệm
Xét y khác 0:
Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)
Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)
\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)
\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)
Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)
\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)
Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)
\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)
Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)
\(\Leftrightarrow4\sqrt{x}=13-4x\)
\(\Leftrightarrow16x=169-104x+16x^2\)
\(\Leftrightarrow16x^2-120x+169=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)
Nếu \(x-3=0\Rightarrow x=y=3\)
Vậy ta có 3 cặp số (x;y) thỏa mãn: ...
Thử lại ta thấy cặp nghiệm vô tỉ:
\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:
\(x=y=3\)
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{\frac{3+x^2}{x}}.\sqrt{x}+\sqrt{\frac{3+y^2}{y}}.\sqrt{y}+\sqrt{\frac{3+z^2}{z}}.\sqrt{z}\right)^2\) \(\le\left(\frac{3+x^2}{x}+\frac{3+y^2}{y}+\frac{3+z^2}{z}\right)\left(x+y+z\right)\)
\(\Rightarrow\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\) \(\le\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+x+y+z\right)\left(x+y+z\right)\)
Kết hợp giải thiết:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\) suy ra:
\(\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\le4.\left(x+y+z\right)^2\)
Do đó:
\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\le2.\left(x+y+z\right)\) \(\left(1\right)\)
Theo giải thiết ta có:
\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}=2x+2y+2z\)
Do đó xảy ra đẳng thức ở \(\left(1\right)\) tức là:
\(\hept{\begin{cases}\frac{3+x^2}{x}=\frac{3+y^2}{y}=\frac{3+z^2}{z}\\\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\end{cases}}\) \(\Leftrightarrow x=y=z=1\)
Thử lại thấy bộ số \(\left(x,y,z\right)=\left(1,1,1\right)\) thỏa mãn.
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
Ra. Bài này không khó lắm. Chỉ cần khéo chút là được
ĐKXĐ: \(y\ge0;x\ge\frac{3}{2}\)
Phương trình đầu tương đương với\(x^3+y^3+3xy\left(x+y\right)+4xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
<=> \(\left(x+y\right)^3+4xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
ta đánh giá vế trái
Áp dụng BĐT cô-si cho 2 số dương
=> \(VT\ge2\sqrt{4\left(x+y\right)^4.xy}=4\left(x+y\right)^2\sqrt{xy}\)
\(=4x^2\sqrt{xy}+8xy\sqrt{xy}+4y^2\sqrt{xy}=4\sqrt{xy}\left(x^2+y^2\right)+8xy\sqrt{xy}\)
Lại áp dụng cô-si ta lại có
\(VT\ge2\sqrt{8.4.xy.\sqrt{\left(xy\right)^2.\left(x^2+y^2\right)}}=8xy\sqrt{2\left(x^2+y^2\right)}=VP\)
Dấu "=" khi \(\left(x+y\right)^3=4xy\left(x+y\right)\)
và \(4\sqrt{xy}\left(x^2+y^2\right)=8xy\sqrt{xy}\)
chỗ này bạn giải cẩn thận 1 tí được x=y
Với x=y thay vào pt 2 ta được
\(\sqrt{x}-\sqrt{2x-3}+2x=6\)
Nhân liên hợp ta đuọc
<=> \(\frac{\left(\sqrt{x}-\sqrt{2x-3}\right)\left(\sqrt{x}+\sqrt{2x-3}\right)}{\sqrt{x}+\sqrt{2x-3}}+2\left(x-3\right)=0\)
<=>\(\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}-2\left(3-x\right)=0\Leftrightarrow\left(3-x\right)\left(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-2\right)=0\)
<=> x=3 Hoặc \(\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)(1)
Ta thấy vì \(x\ge\frac{3}{2}\Rightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}\le\frac{\sqrt{2}}{\sqrt{3}}<2\) ==> (1) vô nghiệm
Vậy ta có nghiệm của hệ pt là (x;y)=(3;3)
Được chưa bạn. không hiểu nói cho mình