Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\)
=>\(\left(x+y+z\right)^2=0\)
=>\(x^2+y^2+z^2+2xy+2yz+2xz=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(2+2\left(xy+yz+xz\right)=0\)
=>\(xy+yz+xz=-1\)
=>\(\left(xy+yz+xz\right)^2=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2xyz\left(y+z+x\right)=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2.xyz.0=1\)
=>\(x^2y^2+y^2z^2+x^2z^2=1\)
Mặt khác: \(x^2+y^2+z^2=2\)
=>\(\left(x^2+y^2+z^2\right)^2=4\)
=>\(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=4\)
=>\(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=4\)
=>\(x^4+y^4+z^4+2.1=4\)
=>\(x^4+y^4+z^4+2=4\)
=>\(x^4+y^4+z^4=2\)
\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)
\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
Tổng 3 số không âm=0 <=> chúng đều=0
\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)
Vậy x=y=z=0
\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)
\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)
\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
Tổng 2 số không âm=0 <=> chúng đều=0
\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)
Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)
\(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Leftrightarrow\)\(\frac{2x}{3}.\frac{1}{12}\)\(=\)\(\frac{3y}{4}.\frac{1}{12}\)\(=\)\(\frac{4z}{5}.\frac{1}{12}\)
\(\Leftrightarrow\)\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
suy ra: \(\hept{\begin{cases}\frac{x}{18}=2\\\frac{y}{16}=2\\\frac{z}{15}=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=36\\y=32\\z=30\end{cases}}\)
Vậy \(x=36;\) \(y=32;\) \(z=30\)
\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(\Rightarrow\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\frac{x^2}{5}-\frac{y^2}{5}-\frac{z^2}{5}=0\)
\(\Rightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(\Rightarrow x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\)
Mà \(x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)\ge0\)
Xảy ra khi \(\hept{\begin{cases}x^2\left(\frac{1}{2}-\frac{1}{5}\right)=0\\y^2\left(\frac{1}{3}-\frac{1}{5}\right)=0\\z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\)\(\Rightarrow x=y=z=0\)
tham khảo
https://olm.vn/hoi-dap/detail/107532181603.html
Nhân 4 vào pt đã cho được
\(4x^4+4x^2-4y^2+4y+40=0\)
\(\Leftrightarrow\left(4x^4+4x^2+1\right)-\left(4y^2-4y+1\right)=-40\)
\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2y-1\right)^2=-40\)
\(\Leftrightarrow\left(2x^2+1-2y+1\right)\left(2x^2+1+2y-1\right)=-40\)
\(\Leftrightarrow\left(2x^2-2y+2\right)\left(2x^2+2y\right)=-40\)
\(\Leftrightarrow\left(x^2-y+1\right)\left(x^2+y\right)=-10\)
Vì \(x;y\inℤ\Rightarrow x^2-y+1;x^2+y\inℤ\)
Ta có: \(x^2+y=x^2-y+1+\left(2y-1\right)\)
Mà 2y - 1 lẻ nên 2 số \(x^2+y;x^2-y+1\) khác tính chẵn lẻ
Lập bảng làm nốt