Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a) Ta có = 1 = 1.1 = (-1) . (-1)
Lập bảng xét 2 trường hợp ta có :
\(x+3\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) |
\(y\) | \(-1\) | \(-3\) |
Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)
b)
\(a;\left(x+3\right)\left(y+2\right)=1\)
=> Có 2 TH:
*TH1: x+3 = 1 và y+2 =1
=> x = -2 y = -1
* TH2: x +3 = -1 và y + 2 = -1
=> x = -4 y = -3
Ta có :
\(<=> (x-1)(2-y)-(x-1)(y-2) = 0 \\ <=> (x-1)[2-y-(y-2)] = 0 \\ <=> (x-1)[2-y-y+2] = 0 \\ <=> (x-1)(-2y+4) = 0 \\ => \Bigg[ \begin{matrix} x-1=0\ (1)\\ -2y+4=0\ (2)\\ \end{matrix}\\ Ta\ có :\ (1) <=> x=1\\ Ta\ có :\ (2) <=> -2y=-4 <=> y = 2\\ Vậy\ x = 1,\ y=2. \)
Đó là bài giải, cảm ơn bạn đã cho câu hỏi khó đó!
Chúc bạn học tốt!
ta có \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
mà \(\left(x-2\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|2x-6\right|\ge0\\\left|y+7\right|\ge0\end{cases}}\)
mà \(\left|2x-6\right|+\left|y+7\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x-6=0\\y+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-7\end{cases}}}\)