Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
x/2=y/3=x.y/2.3=216/6=36
x/2=36
x=72
y/3=36
y=108
\(\frac{x}{2}=\frac{y}{5}\)và x.y=10
Bài làm
=> \(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{10}{10}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{5}=1\Rightarrow y=5\end{cases}}\)
Vậy x=2
y=5
\(\frac{x}{2}=\frac{y}{5}\)và \(x.y=10\)
Ta có : \(\frac{x.x}{2}=\frac{y.x}{5}=\frac{10}{5}=2\)
Suy ra: \(\frac{x^2}{2}=2\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Với \(x=2\Rightarrow y=5\)
Với \(x=-2\Rightarrow y=-5\)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
b) x+y =x.y
x=x.y-y
x=y(x-1)
x/y=x-1. do theo bài ra thì x/y=x+y nên x+y=x-1 suy ra y=-1 rồi từ đó tính ra x thôi
a) ta có x-y=2x+2y
x=2x+3y
3y=-x
x/y=3/(-1). do theo đề ra thì x/y= x-y nên suy ra x-y=3/(-1) (1)
mặt khác x/y=2(x+y) nên 2(x+y)=3/(-1)hay x+y=3/(-2)(2)
từ (1)và (2) thì tìm ra x,y thôi