Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)
\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)
\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)
2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)
=4+1-1/8
=5-1/8=39/8
\(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\Leftrightarrow4xy\left(x+1\right)-4xy\left(y+1\right)+1=\left(xy\right)^3\)
\(\Leftrightarrow\left(4xy-4xy\right)\left(x+1+y+1\right)+1=\left(xy\right)^3\Rightarrow1=\left(xy\right)^3\Rightarrow xy=1\)
=> x=1;y=1
x=-1;y=-1
\(P=x^2+y^2+y^2+z^2\ge2xy+2yz=2\left(xy+yz\right)=36\)
\(\Rightarrow P_{min}=36\) khi \(\left\{{}\begin{matrix}x=y\\y=z\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=3\\x=y=z=-3\end{matrix}\right.\)
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
a) \(a^2x+a^2y-9x-9y\)
\(=\left(a^2x+a^2y\right)-\left(9x+9y\right)\)
\(=a^2\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(a^2-9\right)\)
\(=\left(x+y\right)\left(a-3\right)\left(a+3\right)\)
b) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
c) \(x^2\left(x-3\right)+12-4x\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
d) \(4x\left(x-y\right)+6y\left(x-y\right)\)
\(=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
e) \(5\left(x+y\right)-xy-y^2\)
\(=5\left(x+y\right)-\left(xy+y^2\right)\)
\(=5\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(5-y\right)\)