Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Hình như đề sai bạn ơi: Phải là \(x^2+xy+y^2=x^2y^2\)chứ bạn
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+xy+y^2+xy=x^2y^2+xy\)
\(\Leftrightarrow x^2+2xy+y^2=xy.xy+xy\left(1\right)\)
\(\Leftrightarrow\left(x^2+xy\right)+\left(xy+y^2\right)=xy.\left(xy+1\right)\)
\(\Leftrightarrow x.\left(x+y\right)+y.\left(x+y\right)=xy.\left(xy+1\right)\)
\(\Leftrightarrow\left(x+y\right).\left(x+y\right)=xy.\left(xy+1\right)\left(2\right)\)
\(\text{Từ (1) bạn có thể suy ra (2) luôn nha vì áp dụng hằng đẳng thức,mình ghi vậy cho bạn hiểu thôi.}\)
\(\text{Ta có VP:}xy\text{ và }xy+1\text{ là hai số liên tiếp nhau}\left(3\right)\)
\(\text{Mà VT lại là:}xy\text{ và }xy\text{ là hai số bằng nhau}\left(4\right)\)
\(\text{Từ (3) và (4)}\Rightarrow\text{Không có giá trị của }x,y\Rightarrow x,y\in\varnothing\)
\(\text{Vậy }x,y\in\varnothing\)
c.xy2 + 2xy – 243y + x = 0 (1)
Giải:
Từ (1) ta có x= 243y/(y+1)^2
Vì x, y R+ => 243y chia hết cho (y + 1)^2
Mà (y; y + 1) = 1, nên => 243 chia hết cho (y + 1)^2
Mà 243 = 3^5 => 243 chia hết cho 3^2 , 9^2 và 1^2 (Vì (y + 1)^2 > 1^2)
=> (y + 1)^2 = 3^2 => y = 2 => x = 54.
Hoặc (y + 1)^2 = 9^2 => y = 8 => x = 24.
Vậy nghiệm nguyên of PT là (54;2); (24;8).
a. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)(1)
Vì tổng bình phương của các số luôn lớn hơn hoặc bằng 0, mà theo (1) ta có :
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}}\)
mình làm thế này các bạn xem có đúng ko. nếu đúng thì k nhé
=> x2 + 2xy + y2 = x2y2 + xy
<=> (x+y)2 = (xy + 1/2$$)2 - 1/4$$
<=> (2x+2y)2 = (2xy + 1)2 - 1
<=> (2xy + 1)2 - (2x+ 2y)2 = 1
<=> (2xy + 1+ 2x+2y).(2xy + 1 - 2x- 2y) = 1 = 1.1 = (-1).(-1)
x; y nguyên nên ta có 2 trường hợp:
TH1: 2xy + 2x+ 2y + 1 = 1 và 2xy - 2x - 2y + 1 = 1
=> xy + x + y = 0 và 2xy + 2x+ 2y + 1 + 2xy - 2x - 2y + 1 = 2
=> xy + x + y = 0 và xy = 0
=> x + y = 0 và xy = 0 => x = y = 0
Th2: tương tự
x2 + xy + y2 = x2.y2
=> x2 + 2xy + y2 = ( x. y )2 + xy
=> ( x + y )2 = xy .( xy + 1 )
=> xy . ( xy + 1 ) là số chính phương
mà ( xy,xy + 1 ) = 1 , xy < xy + 1
=> xy = xy + 1 => vô lí
hoặc xy = 0 => xy . ( xy + 1 ) = 0 = 0 2 => x + y = 0= x y => x = y = 0
Vậy x = 0 ; y = 0