K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

 mình làm thế này các bạn xem có đúng ko. nếu đúng thì k nhé

=> x2 + 2xy + y2 = x2y2 + xy

<=> (x+y)2 = (xy + 1/2$$)2 - 1/4$$

<=> (2x+2y)2 = (2xy + 1)2 - 1

<=> (2xy + 1)2 - (2x+ 2y)2 = 1

<=> (2xy + 1+ 2x+2y).(2xy + 1 - 2x- 2y) = 1 = 1.1 = (-1).(-1)

x; y nguyên nên ta có 2 trường hợp:

TH1: 2xy + 2x+ 2y + 1 = 1 và 2xy - 2x - 2y + 1 = 1

=> xy + x + y = 0 và 2xy + 2x+ 2y + 1 + 2xy - 2x - 2y + 1 = 2

=> xy + x + y = 0 và xy = 0

=> x + y = 0 và xy = 0 => x = y = 0

Th2: tương tự

6 tháng 3 2016

x2 + xy + y2 = x2.y2

=> x+ 2xy + y2 = ( x. y )2 + xy

=> ( x + y )2 = xy .( xy + 1 )

=> xy . ( xy + 1 ) là số chính phương

mà ( xy,xy + 1 ) = 1 , xy < xy + 1 

=> xy = xy + 1 => vô lí

hoặc xy = 0 => xy . ( xy + 1 ) = 0 = 0 2 => x + y = 0= x y  => x = y = 0

Vậy x = 0 ; y = 0

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
28 tháng 11 2020

Hình như đề sai bạn ơi: Phải là \(x^2+xy+y^2=x^2y^2\)chứ bạn

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+xy+y^2+xy=x^2y^2+xy\)

\(\Leftrightarrow x^2+2xy+y^2=xy.xy+xy\left(1\right)\)

\(\Leftrightarrow\left(x^2+xy\right)+\left(xy+y^2\right)=xy.\left(xy+1\right)\)

\(\Leftrightarrow x.\left(x+y\right)+y.\left(x+y\right)=xy.\left(xy+1\right)\)

\(\Leftrightarrow\left(x+y\right).\left(x+y\right)=xy.\left(xy+1\right)\left(2\right)\)

\(\text{Từ (1) bạn có thể suy ra (2) luôn nha vì áp dụng hằng đẳng thức,mình ghi vậy cho bạn hiểu thôi.}\)

\(\text{Ta có VP:}xy\text{ và }xy+1\text{ là hai số liên tiếp nhau}\left(3\right)\)

\(\text{Mà VT lại là:}xy\text{ và }xy\text{ là hai số bằng nhau}\left(4\right)\)

\(\text{Từ (3) và (4)}\Rightarrow\text{Không có giá trị của }x,y\Rightarrow x,y\in\varnothing\)

\(\text{Vậy }x,y\in\varnothing\)

18 tháng 1 2016

tic cho mình hết âm nhé

10 tháng 1 2018

c.xy2 + 2xy – 243y + x = 0 (1) 
Giải: 
Từ (1) ta có x= 243y/(y+1)^2 
Vì x, y R+ => 243y chia hết cho (y + 1)^2 
Mà (y; y + 1) = 1, nên => 243 chia hết cho (y + 1)^2 
Mà 243 = 3^5 => 243 chia hết cho 3^2 , 9^2 và 1^2 (Vì (y + 1)^2 > 1^2) 
=> (y + 1)^2 = 3^2 => y = 2 => x = 54. 
Hoặc (y + 1)^2 = 9^2 => y = 8 => x = 24. 
Vậy nghiệm nguyên of PT là (54;2); (24;8). 

6 tháng 11 2019

a. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath

23 tháng 3 2017

x=0

y=0

2 tháng 1 2017

Tú mỡ lòi. Bài dễ thế mà không biết

2 tháng 1 2017

Thằng Nhật mất dậy hôm sau bố đến bố xử!

16 tháng 4 2019

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)(1)

Vì tổng bình phương của các số luôn lớn hơn hoặc bằng 0, mà theo (1) ta có :

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}}\)