K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.

13 tháng 3 2018

x.x + 3.x.y+y.y

=> x(x+3) + y(y+1)

13 tháng 3 2018

+, Nếu x,y đều khác 3 

=> x và y đều ko chia hết cho 3 

=> x^2 và y^2 đều chia 3 dư 1

=> x^2+y^2 chia 3 dư 2

Mà 3xy chia hết cho 3

=> x^2+3xy+y^2 chia 3 dư 2

=> x^2+3xy+y^2 ko phải số chính phương

=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3

Gia sử x chia hết cho 3

=> x=3

=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9

Đặt A = k^2 ( k thuộc N )

<=> y^2+9y+9 = k^2

<=> 4y^2+36y+36 = (2k)2

<=> (2y+9)^2 - 45 = (2k)^2

<=> (2y+9)-(2k)^2 = 45

<=> (2y-2k+9).(2y+2k+9) = 45

Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3

Tk mk nha