K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

mạng đi bạn

23 tháng 8 2019

THÌ BẠN ẤY ĐANG MẠNG ĐÓ

12 tháng 4 2017

ta có:

\(x+2y=3\Leftrightarrow x=3-2y\)

thay vào P, ta có:

\(P=\left(3-2y\right)^2+5y^2\)

\(P=\left(3y-2\right)^2+5\)

\(\Rightarrow P\ge5\)(dấu xảy ra dấu "="\(\Leftrightarrow x=y=\frac{2}{3}\))

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

4 tháng 10 2020

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }

DD
30 tháng 1 2021

\(x-y-z+3=0\Leftrightarrow x=y+z-3\)

\(x^2-y^2-z^2=\left(y+z-3\right)^2-y^2-z^2=y^2+z^2+9+2yz-6y-6z-y^2-z^2\)

\(=2yz-6y-6z+9=1\)

\(\Leftrightarrow yz-3y-3z+4=0\)

\(\Leftrightarrow\left(y-3\right)\left(z-3\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Xét bảng: 

y-315-1-5
z-351-5-1
y482-2
z84-22
x99-3-3
6 tháng 11 2019

+) Với x =0 => y = -1 hoặc y =1 . Thay vào thỏa mãn

+) Với x khác 0

Có: \(x^4+x^3+x^2+x+1=y^2\)

<=> \(4x^4+4x^3+4x^2+4x+4=4y^2\)

=> \(4y^2=\left(4x^4+4x^3+x^2\right)+\left(3x^2+4x+4\right)>\left(4x^4+4x^3+x^2\right)=\left(2x+x\right)^2\)(1)

( vì \(3x^2+4x+4>0\))

và \(4y^2=\left(4x^4+x^2+4+4x^3+8x^2+4x\right)-5x^2< \left(4x^4+x^2+4+4x^3+8x^2+4x\right)\)

                                                                                                            \(=\left(2x+x+2\right)^2\)(2)

( vì x khác 0 => \(x^2>0\))

tỪ (1) VÀ (2) => \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

=> \(4y^2=\left(2x^2+x+1\right)^2\)

=> \(\left(2x^2+x\right)^2+3x^2+4x+4=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)

<=> \(x^2-2x-3=0\)

<=> x = -1 hoặc x = 3

Với x =-1 => y = -1 hoặc 1 . Thử lại thỏa mãn

Với x = 3 => y = 11 hoặc -11. Thử lại thỏa mãn.

Vậy: phương trình trên có nghiệm ( x; y ) là \(\left(0;\pm1\right);\left(-1;\pm1\right);\left(3;\pm11\right)\)