Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}=1\)=>\(\dfrac{x+y+1}{xy}=1\)=>x+y+1=xy =>x-xy=-1-y =>x(1-y)=-1-y
=>x=\(\dfrac{-1-y}{1-y}\) mà x nguyên dương nên -1-y ⋮ 1-y
=>(1-y)-2 ⋮ 1-y
=>2 ⋮ 1-y
=>1-y ∈{1;-1;2;-2}
=>y∈{0;2;-1;3}. Vì y nguyên dương và y khác 0 nên y∈{2;3}
* Nếu y=2 thì phương trình x+y+1=xy trở thành:
x+3=2x =>x=3
* Nếu y=3 thì phương trình x+y+1=xy trở thành:
x+4=3x =>x=2
- Vậy y=2 thì x=3 ; y=3 thì x=2.
Do x,y là các số nguyên dương nên \(\frac{1}{x}\ge1;\frac{1}{y}\ge1\Rightarrow\frac{1}{x}+\frac{1}{y}\ge2>\frac{1}{2}\)
#)Giải :
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{5}\Leftrightarrow5\left(x+y\right)=xy\Leftrightarrow5x+5y=xy\)
\(\Leftrightarrow xy-5x-5y=0\Leftrightarrow\left(x-5\right)\left(y-5\right)=25\)
Xét các TH rồi đưa ra KL
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow5(x+y)=xy\Leftrightarrow5x-xy+5y=0\)
\(\Leftrightarrow x(5-y)-5(5-y)=-25\)
\(\Leftrightarrow(5-x)(5-y)=25=1\cdot25=25\cdot1=(-1)(-25)=(-25)(-1)=5\cdot5=(-5)(-5)\)
Vì x,y > 0 nên 5 - x < 5 , 5 - y < 5.Do đó ta có các trường hợp:
- 5 - x = 1 và 5 - y = 25 <=> x = 4 và y = -20 loại
- 5 - x = -1 và 5 - y = -25 <=> x = 6 và y = 30 nhận
- 5 - x = -25 và 5 - y = -1 <=> x = 30 và y = 6 nhận
- 5 - x = -5 và 5 - y = -5 <=> x = 10 và y = 10 nhận
Vậy : ...
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{8}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{xy-8}{8y}=\frac{1}{2}\)
\(\Leftrightarrow2\left(xy-8\right)=8y\)
\(\Leftrightarrow2xy-16=8y\)
\(\Leftrightarrow2xy-8y=16\)
\(\Leftrightarrow2y\left(x-4\right)=16\)
\(\Leftrightarrow y\left(x-4\right)=8=1.8=8.1=\left(-1\right)\left(-8\right)=\left(-8\right)\left(-1\right)=2.4=4.2=\left(-2\right)\left(-4\right)=\left(-4\right)\left(-2\right)\)
Còn lại tự lập bảng nha!
Bài giải
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{8}-\frac{4}{8}=\frac{1}{y}\)
\(\frac{x-4}{8}=\frac{1}{y}\)
\(xy-4y=8\)
\(y\left(x-4\right)=8\)
\(\Rightarrow\text{ }y,\left(x-4\right)\inƯ\left(8\right)\)
Mà x ; y là số nguyên dương nên :
Ta có bảng :
x - 4 | 1 | 2 | 4 | 8 |
y | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(5\text{ ; }8\right)\text{ ; }\left(6\text{ ; }4\right)\text{ ; }\left(8\text{ ; }2\right)\text{ ; }\left(12\text{ ; }1\right)\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\)
=> \(\frac{y}{xy}+\frac{x}{xy}+\frac{2}{xy}=1\)
=> \(\frac{y+x+2}{xy}=1\)
=> y + x + 2 = xy
=> y + x + 2 - xy = 0
=> y(1 - x) + x + 2 = 0
=> y(1 - x) + (1 - x) = -3
=> (y + 1)(1 - x) = -3
=> x, y \(\in\)Ư (-3) = {1; -1; 3; -3}
Lập bảng :
y + 1 | 1 | -1 | 3 | -3 |
1 - x | -3 | 3 | -1 | 1 |
y | 0 | -2 | 2 | -4 |
x | 4 | -2 | 2 | 0 |
Vậy ...
ta có \(\frac{1}{x}+\frac{1}{y}=2\)
=>\(\frac{x+y}{xy}=2\)
=> \(x+y=2xy\)
=> \(x+y-2xy=0\)
=> \(x\left(1-2y\right)+y=0\)
=> \(2x\left(1-2y\right)+2y=0\)
=> \(2x\left(1-2y\right)+2y-1=-1\)
=> \(\left(2x-1\right)\left(1-2y\right)=-1\)
=> \(\left(2x-1\right)\left(2y-1\right)=1\)
Vì x,y là số nguyêm nên 2x-1,2y-1 là ước của 1 nên ta có bảng sau
2x-1 | 1 | -1 |
2y-1 | 1 | -1 |
x | 1 | 0 |
y | 1 | 0 |
kết hợp vơi đk \(x,y\ne0\)=> x=1,y=1
Ta có :
\(\frac{1}{x}+\frac{1}{y}=2\)
\(\Rightarrow\frac{y}{xy}+\frac{x}{xy}=2\)
\(\Rightarrow\frac{y+x}{xy}=2\)
\(\Rightarrow2xy=y+x\)
\(\Rightarrow2xy-y-x=0\)
\(\Rightarrow y\left(2x-1\right)-x=0\)
\(\Rightarrow y\left(2x-1\right)-\frac{1}{2}\left(2x-1\right)-\frac{1}{2}=0\)
\(\Rightarrow\left(y-\frac{1}{2}\right)\left(2x-1\right)=\frac{1}{2}\)
\(\Rightarrow\left(2y-1\right)\left(2x-1\right)=1\)
vì x,y \(\in\)Z nên \(2y-1;2x-1\)\(\in\)Ư ( 1 ) = { 1 ; -1 }
+) 2y - 1 = 1 thì y = 1 khi đó 2x - 1 = 1 => x = 1 ( chọn )
+) 2y - 1 = -1 thì y = 0 khi đó 2x - 1 = -1 thì x = 0 ( loại )
Vậy ( x ; y ) = ( 1 ; 1 )
\(\frac{x}{4}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{4}-\frac{2}{4}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{1}{y}\)
\(\Leftrightarrow\left(x-2\right).y=4.1\)
Vậy ta có bảng:
x-2 | 1 | 2 | -1 | -4 |
x | 3 | 4 | 1 | -2 |
y | 4 | 2 | -4 | -1 |
Vậy có 4 cặp số(x:y) tỏa mãn: (3;4);(4;2);(1;-4);(-2;-1)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{xy}=1;x,y\inℤ;x,y>0\)
\(\frac{1}{xy}=1\Rightarrow xy=1\Rightarrow\)x,y chỉ có thể bằng 1 vì x,y là số nguyên dương
mà nếu x,y bằng 1 thì \(\frac{1}{x}+\frac{1}{y}=2\) nên x,y không thể bằng 1
vậy không có x,y thoả mãn đề bài