Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\) (x\(\le\)y;x,y\(\in\)Z+)
Suy ra: \(\frac{1}{x}<\frac{1}{8}\) nên \(x>8\) (*)
Vì \(x\le y\) nên \(\frac{1}{x}\ge\frac{1}{y}\)
Suy ra: \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{x}\)
Do đó: \(\frac{2}{x}\ge\frac{1}{8}\) => \(x\le16\) (**)
Từ (*) và (**), suy ra: \(x\in\left\{9;10;11;12;13;14;15;16\right\}\)
+) Nếu \(x=9\) thì \(\frac{1}{9}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{9}=\frac{1}{72}\)
+) Nếu \(x=10\) thì \(\frac{1}{10}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{10}=\frac{1}{40}\)
+) Nếu \(x=11\) thì \(\frac{1}{11}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{11}=\frac{3}{88}\) (Loại)
+) Nếu \(x=12\) thì \(\frac{1}{12}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{12}=\frac{1}{24}\)
+) Nếu \(x=13\) thì \(\frac{1}{13}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{13}=\frac{5}{104}\) (Loại)
+) Nếu \(x=14\) thì \(\frac{1}{14}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{14}=\frac{3}{56}\) ( Loại)
+) Nếu \(x=15\) thì \(\frac{1}{15}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{15}=\frac{7}{120}\) (Loại)
+) Nếu \(x=16\) thì \(\frac{1}{16}+\frac{1}{y}=\frac{1}{8}\) => \(\frac{1}{y}=\frac{1}{8}-\frac{1}{16}=\frac{1}{16}\)
Vậy: x=9; y=72
x=10; y=40
x=12; y=24
x=16; y=16
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
\(x-\dfrac{1}{4}=\dfrac{5}{6}\times\dfrac{4}{9}\)
<=>\(x-\dfrac{1}{4}=\dfrac{10}{27}\)
<=>\(x=\dfrac{10}{27}+\dfrac{1}{4}=\dfrac{67}{108}\)
Bài làm:
Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{99}+\frac{49}{200}\)
\(=\frac{14651}{19800}\)
Bạn nên gõ đúng phân số cần giải nha . Nếu cần thiết thì bạn có thể sử dụng công thức trực quan hoặc cho thêm dấu ngoặc vào phần tử hoặc mẫu số khi nó có từ 2 phần tử trở lên á bạn .
\(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{1}{3}\)
\(\dfrac{2x-3}{3}=\dfrac{1}{3}+\dfrac{3}{2}\)
\(\dfrac{2x-3}{3}=\dfrac{11}{6}\)
\(\dfrac{2.\left(2x-3\right)}{3.2}=\dfrac{11}{6}\)
\(2\left(2x-3\right)=11\)
\(4x-6=11\)
\(x=\dfrac{17}{4}\)
2x-\(\dfrac{3}{3}\)+\(\dfrac{-3}{2}\)=\(\dfrac{1}{3}\)
=>2x-1=\(\dfrac{1}{3}\)+\(\dfrac{3}{2}\)=\(\dfrac{11}{6}\)
=>2x=\(\dfrac{11}{6}\)+1=\(\dfrac{17}{6}\)
=>x=\(\dfrac{17}{6}\):2=\(\dfrac{17}{4}\)
\(\dfrac{2}{3}\times\left(x+\dfrac{4}{5}\right)=\dfrac{-1}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}:\dfrac{2}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}\times\dfrac{3}{2}\\ x+\dfrac{4}{5}=\dfrac{-1}{2}\\ x=\dfrac{-1}{2}-\dfrac{4}{5}\\ x=\dfrac{-5}{10}-\dfrac{8}{10}\\ x=\dfrac{-13}{10}\)
\(\dfrac{2}{3}.\left(x+\dfrac{4}{5}\right)=-\dfrac{1}{3}\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}:\dfrac{2}{3}\right)\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}.\dfrac{3}{2}\right)=-\dfrac{1}{2}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)-\dfrac{4}{5}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)+\left(-\dfrac{4}{5}\right)\)
\(x\) \(=-\dfrac{13}{10}\)
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllIIIIIIIIIIIllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
ta có :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{30+10+5+3+2}{60}=\frac{50}{60}=\frac{5}{6}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
\(\frac{1}{\chi}-\frac{y}{2}=\frac{1}{6}\)
\(\Rightarrow\chi=?;y=?\)
vay...