Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Ta có : xy - 3x + y =3
x(y - 3) + y - 3 = 0
(y - 3)(x+1) = 0
=> y - 3 = 0 hoặc x + 1 = 0
Còn lại bạn tự giải nhé
xy + 3x - y = 6
<=> x(y + 3) - y - 3 = 6 - 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 là ước của 3
Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng sau :
x - 1 | - 3 | - 1 | 3 | 1 |
y + 3 | - 1 | - 3 | 1 | 3 |
x | - 2 | 0 | 4 | 2 |
y | - 4 | - 6 | - 2 | 0 |
Vậy ( x;y ) = { ( -2;-4 );( 0;-6 ); ( 4;-2 ) ; ( 2;0 ) }
xy + 3x − y =6
=> ( xy+ 3x) − (y +3) =6+3
=> x(y+3) − (y +3) = 9
=> (y+3).(x−1) = 9
Ta có: x,y e Z =>y+3 và x−1 e Z
Mà (y+3).(x−1) = 9
=> y+3 và x−1 e Ư(9) = { ±1; ±3; ±9}
Lập bảng
y+3 | −1 | 1 | −3 | 3 | −9 | 9 |
x−1 | −9 | 9 | −3 | 3 | −1 | 1 |
y | −4 | −2 | −6 | 0 | −12 | 6 |
x | −8 | 10 | −2 | 4 | 0 | 2 |
Vậy (y;x) e { (−4; −8); (−2; 10); ( −6; −2); (0; 4); (−12; 0); (6; 2) }
Ta có : xy+ 3x -y =6
<=> x(y+3) - y =6
<=> x(y+3) -(y+3) =3
<=> (x-1)(y+3)=3
a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)
b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
a, Gọi A = 4a+2b−ca−b−c
Đặt a2 =b5 =c7 =k⇒{
a=2k |
b=5k |
c=7k |
=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110
b, Ta có: {
x2≥0 |
|y−3|≥0 |
∀x,y⇒A=x2+|y−3|+5≥5
Dấu "=" xảy ra khi {
x2=0 |
|y−3|=0 |
⇒{
x=0 |
y=3 |
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
xy + 3x - y = 6
=>x(y + 3) - y - 3 = 6 - 3
=>x(y + 3) - (y + 3) = 3
=>(x - 1)(y + 3) = 3
Từ đó lập bảng...Chúc bạn học tốt!!!
\(\frac{3x-2}{8}=\frac{5y+6}{3}=\frac{3x-5y-8}{8-3}=\frac{3x-5y-8}{5}\)
\(+,3x=5y+8\Rightarrow\frac{5y+6}{8}=\frac{5y+6}{3}\Rightarrow y=-\frac{6}{5}\Rightarrow x=\frac{2}{3}\)
\(+,3x\ne5y+8\Rightarrow5=10x\Leftrightarrow x=\frac{1}{2}\Rightarrow\frac{-1}{16}=\frac{5y+6}{3}\Rightarrow....\)
câu b
x+y=xy
x+y-xy=0
x(1-y)+y-1=-1
(y-1)(1-x)=-1=-1*1=1*-1
thay vào rồi tính thôi bn
Ta có: xy - 3x + y = 6
=> x(y - 3) + (y - 3) = 3
=> (x + 1)(y - 3) = 3
=> x + 1; y - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
Vậy ...
xy - 3x + y = 6
=> x(y - 3) + y - 3 = 6 - 3
=> x(y - 3) + 1(y - 3) = 3
=> (x + 1)(y - 3) = 3
=> x + 1; y - 3 thuộc Ư(3) = {-1; 1; -3; 3}
ta có bảng :
vậy_