Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
\(xy+3x+4y=x\left(y+3\right)+4y=5\Leftrightarrow x\left(y+3\right)+4y+12=17\Leftrightarrow\left(x+4\right)\left(y+3\right)=17\)
\(2xy+x-2y-1=3\Leftrightarrow x\left(2y+1\right)-\left(2y+1\right)=3\Leftrightarrow\left(x-1\right)\left(2y+1\right)=3\)
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
=>xy-2y=5
=>y(x-2)=5
=>y,x-2\(\in\)Ư(5)={1;5;-1;-5}
Ta có bảng kết quả:
Vậy các bội số (x;y) nguyên cần tìm là:
(x;y)\(\in\){(1;7);(5;3);(-1;-3);(-5;1)}