Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x-1\right)^2+\left|2y+2\right|-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|2y+2\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left|2y+2\right|\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left|2y+2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-1\right)^2+\left|2y+2\right|-3\) là -3 khi x=1 và y=-1
b) \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\)
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\left(2y-6\right)^2\ge0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-6\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\2y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\) là 1 khi x=-5 và y=3
a, 2x+80= 3y
Xét x=0=> 3y=81=> y=4
Xét x>0 ta thấy 2x,80 là số chẵn => 3y là số chẵn (vô lí)
Vậy x=0,y=4