Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ gom mấy cái 2xy gì đó về làm thành một hằng đẳng thức là được ạ!
\(P=\left(x^2+2xy+y^2\right)-6x-6y+y^2-2y+2019\)
\(=\left[\left(x+y\right)^2-2.\left(x+y\right).3+9\right]+\left(y^2-2y+1\right)+2009\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2009\ge2009\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=2009\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
=\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2008\)
=\(\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)
=\(\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008\)
VÌ\(\hept{\begin{cases}\left(y-1\right)^2\ge0\\\left(x+y-3\right)^2\ge0\end{cases}}\)
DẤU BĂNG XẢY RA KHI VÀ CHỈ KHI y=1 và x=2
VẬY GTNN LÀ 2008 TẠI X=2 VÀ Y=1
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
\(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)
\(\Rightarrow x=-4\)
Vậy minP=2002 tại x=-4;y=4
a) \(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)
\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)
Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)
Hay \(P\ge2012;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow x=y=4\)
Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)
A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998
= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy MinA = 1998 khi x = -1 và y = .0
b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32
= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy MinB = 32 khi x = -3/2 và y = 3/2
c) C = 3x2 + x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x
Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6
Vậy MinC = 47/12 khi x = -1/6
A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )
= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999
= ( x - y )2 + ( y - 1 )2 + 1999
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)
=> MinA = 1999 <=> x = y = 1
B = x2 + 5y2 - 2xy + 6x - 18y + 50
= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32
= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= ( x - y + 3 ) + ( 2y - 3 )2 + 32
\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
=> MinB = 32 <=> x = -3/2 ; y = 3/2
C = 3x2 + x + 4
= 3( x2 + 1/3x + 1/36 ) + 47/12
= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x
Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6
=> MinC = 47/12 <=> x = -1/6
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!