K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2015

Ta có: \(\frac{4+x}{7+y}=\frac{4}{7}\)

nên 7(4+x)=4(7+y)

28+7x=28+4y

nên 7x=4y

hay \(\frac{x}{4}=\frac{y}{7}\)

=(x+y)/(4+7)=55/11=5

Suy ra x=5.4=20;y=5.7=35

nhớ Thanks nha bạn

 

9 tháng 12 2022

kcd

 

 

23 tháng 11 2017

ta có \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48

xét \(\frac{x}{3}=\frac{y}{4}\)

đặt K vào \(\frac{x}{3}=\frac{y}{4}\)

ta có

\(\frac{x}{3}=K\Rightarrow x=3K\)

\(\frac{y}{4}=K\Rightarrow y=4K\)

\(x.y=48\)

\(3K.4K=48\)

\(12K^2=48\)

\(K^2=48:12=4\)

\(K^2=2^2\Rightarrow K=2\)

*\(\frac{x}{3}=2\Rightarrow x=2.3=6\)

*\(\frac{y}{4}=2\Rightarrow y=2.4=8\)

*\(\frac{z}{7}=2\Rightarrow z=2.7=14\)

vậy \(x=6;y=8;z=14\)

23 tháng 11 2017

dat \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=k\) => x=3k,y=4k,z=7k

Thay vvao ta dc: x.y=48

                        3k.4k=48

                        12.\(k^2\)=48

                              k^2=4

                               k=4,-4

TH1: k=a

=> x=3k=>x=12

     y va z lam tuong tu nhe

Con TH2 la -4

k cho m nha

16 tháng 8 2018

\(\left(\frac{x}{4}\right)^2=\frac{x}{4}\cdot\frac{y}{7}=\frac{112}{28}=4=\left(\pm2\right)^2\)

+) x/4 = 2 => x = 8 ; y/7 = 2 => y = 14

+) x/4 = -2 => x = -8 ; y/7 = -2 => y = -14

Vậy,......

24 tháng 12 2018

tc: \(\frac{x}{4}=\frac{y}{7}\)và x.y=112

Đặt \(\frac{x}{4}=\frac{y}{7}=k\)

\(\Rightarrow x\)=4k

y=7k

mà xy=112

\(\Leftrightarrow4k7k=112\)

\(\Leftrightarrow28k^2=112\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow k^2=2^2=\left(-2\right)^2\)

vậy k=2 hoặc k=-2

*vsk=2

\(\Rightarrow x=k.4=2.4=8\)

      y=7.2=14

*Vs k=-2

\(\Rightarrow x=-2.4=-8\)

      y=7.-2=-14

Vậy............


18 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)

\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)

\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

\(\Rightarrow x=52;y=63;z=36\)

18 tháng 8 2016

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

5 tháng 10 2017

Đặt\(\frac{x}{4}=\frac{y}{7}=k\)\(\Rightarrow x=4k;y=7k\Rightarrow xy=4k.7k\)

                                                                  hay\(112=28k^2\)

                                                                   \(\Rightarrow k^2=4\)

                                                                   \(\Rightarrow k=2\)hoặc \(k=-2\)

+ ) Với k = 2 thì x = 8 và y = 14

+ ) Với x = - 2 thì x = - 8 : y = - 14

Vì x ; y cùng dấu nên ( x ; y ) = { ( 8 ;14 ) ; ( - 8 : -14 ) }

30 tháng 9 2016

Ta co x/2 = y/5 =>x=(2y)/5  (1)

Lai co xy =10 (2)

Thay (1) vao (2) ta duoc (2y)/5.y=10=>(2y2)/5=10=>y2=10.(5/2)=>y2=25=>y=5 va y=-5

30 tháng 9 2016

Khi y=5 thi x =10:5=2

Khi y=-5 thi x = 10 : (-5)=-2 quên tìm x h bổ sung :) -...-

18 tháng 8 2016

\(\frac{x}{7}=\frac{y}{5}\Rightarrow\frac{x^2}{7}=\frac{xy}{5}=\frac{40}{5}=8\)

\(\Rightarrow x^2=56\)

\(\Rightarrow x=\sqrt{56}=2\sqrt{14}\Rightarrow y=2\sqrt{14}:7\times5=\frac{10\sqrt{14}}{7}\)

Vậy \(\left(x,y\right)=\left(2\sqrt{14},\frac{10\sqrt{14}}{7}\right)\)

18 tháng 8 2016

Bạn ơi sai đề bài rồi nhé         

Bạn coi lại đề bài đi nhé

Dù là làm phép thử cũng ko đúng nữa

                                      

1 tháng 3 2017

a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)

b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)

c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)

1 tháng 3 2017

Bài 1: ĐK của a: \(a\ne0\)

Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow-7a.15=3a^2.7\)

                    \(\Leftrightarrow-105a=21a^2\)

                    \(\Leftrightarrow-105a-21a^2=0\)

                    \(\Leftrightarrow a\left(-105-21a\right)=0\)

                    \(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)

Vậy:..