Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\left|3y+1\right|\ge0\forall y\)
Do đó: \(\left|2x-5\right|+\left|3y+1\right|\ge0\forall x,y\)
mà \(\left|2x-5\right|+\left|3y+1\right|=0\)
nên \(\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{5}{2}\) và \(y=\frac{-1}{3}\)
b) Ta có: \(\left|3x-4\right|\ge0\forall x\)
\(\left|3y-5\right|\ge0\forall y\)
Do đó: \(\left|3x-4\right|+\left|3y-5\right|\ge0\forall x,y\)
mà \(\left|3x-4\right|+\left|3y-5\right|=0\)
nên \(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
c) Ta có: |16-|x||≥0∀x
\(\left|5y-2\right|\ge0\forall y\)
Do đó: |16-|x||+|5y-2|≥0∀x,y
mà |16-|x||+|5y-2|=0
nên \(\left\{{}\begin{matrix}\text{|16-|x||}=0\\\left|5y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-\left|x\right|=0\\5y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=16\\5y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{16;-16\right\}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{16;-16\right\}\) và \(y=\frac{2}{5}\)
Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0
mà ... ( ghi đề bài ra )
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy,.......
Ta có \(\left(x-y-5\right)^2\ge0;\left|2x-3y\right|\Rightarrow0\)
\(\Rightarrow x-y-5=0và2x-3y=0\)
\(\Rightarrow x-y=5\)và \(2x=3y\)
\(\Rightarrow x-y=5\) và\(\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số = nhau
\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{5}{1}=5\)
Tự làm phần còn lại
Ta có
Vì \(\left(x-y-5\right)^2\)và \(|2x-3y|\)luôn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\orbr{\begin{cases}x-y-5=0\\2x-3y=0\end{cases}\Rightarrow\orbr{\begin{cases}x-y=5\\2x=3y\end{cases}}\Rightarrow\orbr{\begin{cases}x-y=5\\x=\frac{3}{2}y\end{cases}}}\)
Thay \(\frac{3}{2}y\)
\(\Rightarrow\orbr{\begin{cases}\left(\frac{3}{2}y-y-5\right)^2=0\\3x-3y=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}y-5=0\left(x^2=0\Rightarrow x=0\right)\\x=y\end{cases}}\)
Nếu x = y thì \(\left(x-y-5\right)^2\ne0\Rightarrow\left(x-y-5\right)^2+|2x-3y|\ne0\Rightarrow\)x , y không tồn tại
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
giúp mik câu cuối với các bạn