Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\Leftrightarrow3^{2x+6}=3\)
=>2x+6=1
=>2x=-5
hay x=-5/2
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)
\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)
\(\Rightarrow x=\frac{1}{2}\) | \(y=-\frac{1}{3}\) | \(z=2\)
Khi \(x=\frac{1}{2}\) thì:
\(\frac{1}{2}+2=\frac{5}{2}\)
\(y=\frac{5}{2}-3=-\frac{1}{2}\)
\(z=\frac{5}{2}-4=\frac{-3}{2}\)
Khi \(y=\frac{-1}{3}\) thì:
\(\frac{-1}{3}+3=\frac{8}{3}\)
\(x=\frac{8}{3}-2=\frac{2}{3}\)
\(z=\frac{8}{3}-4=-\frac{4}{3}\)
Khi \(z=2\) thì:
\(2+4=6\)
\(x=6-2=4\)
\(y=6-3=3\)
Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\) ; \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\) ; \(\left(4;3;2\right)\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1< 0\\x-2>0\end{cases}\) hoặc \(\begin{cases}x+1>0\\x-2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< -1\\x>2\end{cases}\) (loại) hoặc \(\begin{cases}x>-1\\x< 2\end{cases}\)
\(\Leftrightarrow-1< x< 2\)
b)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\) hoặc \(\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\)
\(\Leftrightarrow x>2\) hoặc \(x< -\frac{2}{3}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow x+1\) và \(x-2\) trái dấu nhau.
Mà \(x-2< x+1\) với mọi x
\(\Rightarrow\begin{cases}x-2< 0\\x+1>0\end{cases}\Leftrightarrow\begin{cases}x< 2\\x>-1\end{cases}\Leftrightarrow-1< x< 2\)
\(\Rightarrow x\in\left\{0;1\right\}\)