Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
\(x^2-y^2\)
\(=x^2-xy+xy-y^2=x.\left(x-y\right)+y.\left(x-y\right)=\left(x+y\right).\left(x-y\right)\)
\(\left(x+y\right).\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
x - y = xy
\(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )
Theo bài ra : x : y = x - y
\(\Rightarrow\)x + 1 = x - y
\(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy , ta được :
x - ( -1 ) = x . ( -1 )
x + 1 = -x
2x = -1
x = \(\frac{-1}{2}\)
Vậy ...
Ta có:
x - y = xy = x/y
Xét xy = x : y
=> y.y = x : x
=> y^2 = 1
=> y = 1
=> x - 1 = x (vô lí)
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
\(\left(x-y\right):\left(x+y\right):xy=1:7:24\)
\(\Rightarrow\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau đốt với hai tỉ số đầu ta có:
\(\frac{x-y}{1}=\frac{x+y}{7}=\frac{x-y+x+y}{1+7}=\frac{2x}{8}=\frac{x}{4}\)
Do đó \(\frac{x}{4}=\frac{xy}{24}\Rightarrow\frac{x}{xy}=\frac{4}{24}\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)
Thay y = 6 vào (1) ta có:
\(\frac{x-6}{1}=\frac{x+6}{7}\)
=> 7(x - 6) = x + 6
=> 7x - 42 = x + 6
=> 7x - x = 6 + 42
=> 6x = 48
=> x = 8
Vậy x = 8, y = 6
Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )
\(S=x+y+1\Rightarrow x+y=S-1\)
( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)
\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)
=> (S + 4)(S + 1) ≤ 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 ≤ S ≤ -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
a) Ta có \(x:2=y:-5.\)
=> \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;-10\right).\)
k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\) và \(2x+3y-z=186.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)
Mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
Bạn này riết quá, mình cũng đang bận nữa :(
b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)
Vậy...
c) Xem lại đề nhé.
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)
Vậy...
e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)
\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)
Vậy...
f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
g) Áp dụng TCDTSBN:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)
\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
Vậy...
h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)
Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)
Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)
Ta có hệ :
\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)
Vậy...
4xy
1/3
\(x+y=4xy\Rightarrow4x-1=\frac{x}{y}=x+y=4xy\Rightarrow3x-1=y\)
\(\Rightarrow4x\left(3x-1\right)=4x-1\Rightarrow12x^2-8x+1=0\Rightarrow\left(4x+1\right)^2-4x^2=0\Rightarrow\left(4x+1-2x\right)\left(4x+1+2x\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(6x+1\right)=0\Rightarrow\orbr{\begin{cases}2x+1=0\\6x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{1}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}y=-\frac{5}{2}\\y=-\frac{3}{2}\end{cases}}}\)