Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)
a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.
Mà: -3x + 3 > -2x - 2
=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2
b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.
TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6
=> x lớn hơn hoặc bằng -1/6
Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6
=> x bé hơn hoặc bằng 1/4
\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)
a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)
b: \(\dfrac{x}{3-x}>-1\)
\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)
\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)
=>3-x>0
hay x<3
c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)
\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)
=>-17<=x<-5
d: \(\dfrac{7}{4x^2-1}\ge0\)
=>4x2-1>0
=>(2x-1)(2x+1)>0
=>x>1/2 hoặc x<-1/2
a. \(\left(-3x+3\right)\left(-2x-2\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}-3x+3\le0;-2x-2\ge0\\-3x+3\ge0;-2x-2\le0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-3x\le-3;-2x\ge2\\-3x\ge-3;-2x\le2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{-3}{-3}=1;x\le\dfrac{2}{-2}=-1\\x\le\dfrac{-3}{-3}=1;x\ge\dfrac{2}{-2}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left[-1;1\right]\end{matrix}\right.\)
Vậy \(x\in\left[-1;1\right]\)
b. \(\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{2}+3x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-2x\ge0;\dfrac{1}{2}+3x\ge0\\\dfrac{1}{2}-2x\le0;\dfrac{1}{2}+3x\le0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2x\ge-\dfrac{1}{2};3x\ge-\dfrac{1}{2}\\-2x\le-\dfrac{1}{2};3x\le-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\ge-\dfrac{1}{2}:3=-\dfrac{1}{6}\\x\ge-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\le-\dfrac{1}{2}:3=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\)
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
a: 5x+2>3x-1
=>5x-3x>-1-2
=>2x>-3
hay x>-3/2
b: \(\dfrac{3}{4}x-\dfrac{1}{2}>\dfrac{1}{2}x+\dfrac{3}{4}\)
=>3/4x-1/2x>3/4+1/2
=>1/2x>5/4
hay x>5/4:1/2=5/2
c: (x-2)(x-3)>0
=>x-3>0 hoặc x-2<0
=>x>3 hoặc x<2
d: (2x+4)(x-5)<0
=>(x+2)(x-5)<0
=>-2<x<5
a, 3x2 - 6x > 0
=> 3x2 > 6x ( Với mọi x )
=> 3xx > 6x
=> 3x > 6 => x > 3
Vậy x > 3 là thỏa mãn yêu cầu
b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0
=> 2x - 3 \(\le\)0 Hoặc 2 - 5x \(\le\)0
Trường hợp 1: 2x - 3 \(\le\)0
=> 2x \(\le\)3
=> x \(\le\)\(\frac{3}{2}\)( 1 )
Trường hợp 2: 2 - 5x \(\le\)0
=> 2 \(\le\)5x
=> x \(\le\frac{2}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:
x \(\le\frac{3}{2}\)Hoặc x\(\le\frac{2}{5}\)là thỏa mãn
Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu
Vậy ....
c, x2 - 4 \(\ge\)0
=> x2 \(\ge\)4
=> x2 \(\ge\)22
=> x \(\ge\)2
Vậy x\(\ge\)2 là thỏa mãn yêu cầu
~Haruko~
a) (3x)2 - 6x > 0
=> 3x (3x - 2) > 0
*Trường hợp 1:
=> x > 0 và x > 2/3 (1)
*Trường hợp 2:
=> x < 0 và x < 2/3 (2)
*** Từ (1) và (2) => x > 0 hoặc x < 2/3 sẽ thỏa mãn bất phương trình trên.