K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

5x^2 +5y^2 +8xy -2x +2y +2 =0

(x^2 -2x +1)+(y^2+2y+1)+4(x^2+2xy+y^2)=0

(x-1)^2+(y+1)^2+4(x+y)^2=0

vì \(\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+y\right)^2\ge0\)

suy ra x=1 ,y=-1 

21 tháng 10 2017

a, \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+2y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2.1-2.1=0\\x=1\\y=-1\end{matrix}\right.\)

Vậy ...

b, \(y^2+2y+4^x-2^{x+1}+2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\left(y+1\right)^2=0\\\left(2^x-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)

Vậy ...

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

4 tháng 10 2015

<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0

<=>(2x+2y)2+(x-1)2+(y+1)2=0

<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0

*(x-1)2=0

<=> x-1=0

<=>x=1

*(y+1)2

<=> y+1=0

<=> y=-1

Vậy x=1;y= -1

2 tháng 12 2017

Ta có 5x2+5y2+8xy-2x+2y+2=0

=> (4x2+8xy+4y2)+(x2-2x+1)+(y2+2y+1)=0

=> (2x+2y)2+(x-1)2+(y+1)2=0

=> (2x+2y)2=(x-1)2=(y+1)2=0

=> x=1 và y=-1

=> M=(x+y)2015+(x-2)2016+(y+1)2017

=(1-1)2015+(1-2)2016+(-1+1)2017

= 0+(-1)2016+0

=1

12 tháng 12 2017

tính M=(x+y)2015+(x-2)2016+(y+1)2017

Ta có

5x^2 + 5y^2 + 8xy - 2x + 2y + 2= 0

<=> 4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0

<=> (4x^2 + 8xy + 4y^2) + (x^2 - 2x + 1) + (y^2 + 2y + 1) =0

<=> (2x + 2y)^2 + (x - 1)^2 + (y + 1)^2 =0

<=> 2x + 2y= 0 hoặc x - 1= 0 và y + 1= 0

<=> x=1 và y= - 1 thay x=1, y= - 1 vào biểu thức M ta có

M= (1 - 1)^2015 + (1 - 2)^2016 + ( - 1 + 1)^2017

= 0 + - 1^2016 + 0 = 1

15 tháng 12 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4x^2+x^2+4y^2+y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay \(x=1\)\(y=-1\) vào biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(\left[1+\left(-1\right)\right]^{2007}+\left(1-2\right)^{2008}+\left[\left(-1\right)+1\right]^{2009}\)

\(=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)

\(=0+1+0\)

\(=1\)

Vậy giá trị của biểu thức \(M\) tại ​\(x=1\)\(y=-1\)\(1\)

5 tháng 10 2015

a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên

2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0

4x^2+2y^2-4y-12x+4xy+10=0

(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0

(2x+y)^2-6(2x+y)+9+(y-1)^2=0

(2x+y-3)^2+(y-1)^2=0(*)

vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi

(2x+y-3)^2=0<=>2x-2=0<=>x=1

(Y-1)^2=0<=>y=1

 

 

28 tháng 12 2016

x=1 y=1