K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Ta có:

\(\dfrac{x}{y}=\dfrac{17}{3}=\dfrac{x}{17}=\dfrac{y}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)

=>\(\dfrac{x}{17}=-3,x=-51\)

=>\(\dfrac{y}{3}=-3,y=-9\)

12 tháng 10 2017

Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\)\(x+y=-60\)

\(\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)

\(\Rightarrow\dfrac{x}{17}=-3\Rightarrow x=-51\)

\(\dfrac{y}{3}=-3\Rightarrow y=-9\)

Vậy \(x=-51\)\(y=-9\)

~ Học tốt nhé bạn~

11 tháng 7 2017

a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)

\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)

\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)

Vậy x = 51; y = 9

b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)

\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)

Vậy x = 38; y = 42.

11 tháng 7 2017

Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\)\(x+y\) \(=60\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)

\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)

+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)

Vậy \(x=51\) ; \(y=9\)

Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\)\(2x-y=34\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)

+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)

+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)

Vậy \(x=38\) ; \(x=42\)

1 tháng 5 2017

\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)

x=-3.17=-51

y=-3.3=-9

câu tiếp nha:\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

x=19.2=38

y=21.2=42

Chúc bạn học tốtbanh

1 tháng 5 2017

\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\)và x+y=-60

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)

=>x=-3.17=-51

y=-3.3=-9

b)\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)và 2x-y=34

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

=>x=2.19=38

y=2.21=42

31 tháng 12 2018

sorry mik nhầm ở phần áp dụng :

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\) ( do x + y = -60 )

+) \(\dfrac{x}{17}=-3\Rightarrow x=-3.17=-51\)

+) \(\dfrac{y}{3}=-3\Rightarrow y=-3.3=-9\)

Vậy x = -51 , y = -9

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

\(\frac{x}{y}=\frac{17}{3}\Rightarrow \frac{x}{y}+1=\frac{17}{3}+1\)

\(\Rightarrow \frac{x+y}{y}=\frac{20}{3}\)

Thay \(x+y=-60\) ta có: \(\frac{-60}{y}=\frac{20}{3}\Rightarrow y=\frac{-60.3}{20}=-9\)

\(\Rightarrow x=-60-y=-60-(-9)=-51\)

Vậy \((x,y)=(-51, -9)\)

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..

23 tháng 10 2019

a.

\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)

\(x-y=17\Rightarrow x=17+y\)

\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)

\(\Rightarrow x=17+y=17+4=21\)

23 tháng 10 2019

b.

\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)

\(x\cdot y=40\Rightarrow x=\frac{40}{y}\)

\(\Rightarrow5\cdot\frac{40}{y}=2y\Rightarrow\frac{200}{y}=2y\Rightarrow2y^2=200\Rightarrow y=\pm10\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

11 tháng 7 2017

Tìm x, y, z biết:

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Giải

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2

Giải

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

13 tháng 10 2018

\(\dfrac{2x}{3}=\dfrac{3y}{4}\)

\(\Leftrightarrow8x=9y\)

\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{8}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{9}=\dfrac{y}{8}=\dfrac{x+y}{9+8}=\dfrac{-17}{17}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=-1\\\dfrac{y}{8}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=-8\end{matrix}\right.\)

13 tháng 10 2018

\(\dfrac{2}{3}x=\dfrac{3}{4}y\Leftrightarrow\dfrac{2x}{3}=\dfrac{3y}{4}\)

\(\Leftrightarrow2x.4=3.3y\Leftrightarrow8x=9y\)

\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{8}\&x+y=-17\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{8}=\dfrac{x+y}{9+8}=\dfrac{-17}{17}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=-1\\\dfrac{y}{8}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=-8\end{matrix}\right.\)

1 tháng 10 2017

a)\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{12}\Leftrightarrow\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-x}{-8}=\dfrac{y}{5}=\dfrac{z}{12}=\dfrac{-x+y+z}{-8+5+12}=\dfrac{60}{9}=\dfrac{20}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}.8=\dfrac{160}{3}\\y=\dfrac{20}{3}.5=\dfrac{100}{3}\\z=\dfrac{20}{3}.12=80\end{matrix}\right.\)

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.4=20\end{matrix}\right.\)

c) \(\left\{{}\begin{matrix}4x=3y\\7y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{x-y+z}{15-20+28}=\dfrac{-46}{23}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2.15=-30\\y=-2.20=-40\\z=-2.28=-56\end{matrix}\right.\)