K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta có : \(x^2+x+13=y^2\)

\(\Leftrightarrow4\left(x^2+x+13\right)=4y^2\)

\(\Leftrightarrow4x^2+4x+52=4y^2\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-4y^2=-51\)

\(\Leftrightarrow\left(2y\right)^2-\left(2x+1\right)^2=51\)

\(\Leftrightarrow\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)

Rồi xét từng trường hợp là ra nha

17 tháng 9 2018

 làm bừa thui,ai trên 11 điểm tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

22 tháng 10 2017

Giải:

Theo đề ra, ta có:

\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow x+y=4021\) (1)

Mà theo giả thiết ta có: \(x-y=1\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

Vậy x = 2011 và y = 2010.

Chúc bạn học tốt!

22 tháng 10 2017

Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...

a) \(x^4+x^3+x+1\)

\(\left(x^4+x^3\right)+\left(x+1\right)\)

\(x^3\left(x+1\right)\)+(x+1)

(x+1)(\(x^3+1\))

e)\(ax^2+ay-bx^2-by\)

\(\left(ax^2+ay\right)-\left(bx^2+by\right)\)

\(a\left(x^2+y\right)-b\left(x^2+y\right)\)

\(\left(x^2+y\right)\left(a-b\right)\)

17 tháng 8 2020

Lời giải:

a)

$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$

b)

$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)

$(x+y)^3=x^3+3x^2y+3xy^2+y^3$

$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$

$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$

$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$

$=x(x-3y)^2+y(y-3x)^2$
d)

$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$

$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

Lời giải:

a)

$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$

b)

$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)

$(x+y)^3=x^3+3x^2y+3xy^2+y^3$

$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$

$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$

$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$

$=x(x-3y)^2+y(y-3x)^2$
d)

$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$

$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$

9 tháng 7 2017

(x + y)2 = 2(x2 + y2)

x2 + 2xy + y2 = 2x2 + 2y2

x2 + y2 = 2xy

<=> x2 + y2 - 2xy = 0

=> (x - y)2 = 0

<=> x - y = 0

=> x = y 

Vậy ...............

11 tháng 12 2016

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )

\(\Leftrightarrow x=2\)

b) \(2x^3+x^2-6x=0\)

\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)

c) \(4x^2+4xy+x^2-2x+1+y^2=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)

5 tháng 7 2017

Đoàn Đức Hiếu

Nguyễn Huy Tú

Hồng Phúc Nguyễn

6 tháng 7 2017

ko đc gắn tên chắ là ko đc làmkhocroi, đùa chút thui chú để thằng nhok làm chứ ko nó ns nữa mệtĐoàn Đức Hiếu