Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
\(\frac{x-7}{y-6}=\frac{7}{6}\)
=> 7(y-6)=6(x-7)
=>7y-42=6x-42
=>7y=6x
=>\(\frac{x}{7}=\frac{y}{6}\)
=> \(\frac{x}{7}=\frac{y}{6}=\frac{x-y}{7-6}=\frac{5}{1}=5\)
=>x=5.7=35
y=5.6=30
Vậy x=35 và y=30
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\) (1)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{14}=3\)
Ta có:
\(\frac{3x}{54}=3\Rightarrow x=54\)
\(\frac{y}{30}=3\Rightarrow y=90\)
\(\frac{2z}{70}=3\Rightarrow z=105\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\)
=> \(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , có :
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{12}=3\)
\(\Rightarrow\begin{cases}\frac{3x}{54}=3\\\frac{y}{30}=3\\\frac{2z}{70}=3\end{cases}\) \(\Rightarrow\begin{cases}x=54\\y=90\\z=105\end{cases}\)
Vậy x = 54
y = 90
z = 105
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42