Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\sqrt{2018x^2+9}\ge\sqrt{9}=3\\\sqrt{4y^2+4y+5}=\sqrt{\left(2y+1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\)
\(\Rightarrow VT\ge2+3=5\) (1)
\(4x^2\ge0\Rightarrow5-4x^2\le5\Rightarrow VP\le5\) (2)
Từ (1),(2) \(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi và chỉ khi \(VT=VP=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2018x^2=0\\\left(2y+1\right)^2=0\\4x^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\)
Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow VT\ge2+0+5=7=VP\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........