Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : xy - 3x + y =3
x(y - 3) + y - 3 = 0
(y - 3)(x+1) = 0
=> y - 3 = 0 hoặc x + 1 = 0
Còn lại bạn tự giải nhé
a) Ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)
Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\) và \(x-y-z=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)
Chúc bạn học tốt!
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}.\frac{y}{3}=\left(\frac{z}{4}\right)^2\Rightarrow\frac{xy}{6}=\frac{z^2}{16}=\frac{xy+z^2}{6+16}=\frac{88}{22}=4\)
\(\Rightarrow\left(\frac{z}{4}\right)^2=4\Rightarrow\frac{z}{4}=\pm2\Rightarrow z=\pm8\)
\(\Rightarrow xy+z^2=xy+64=88\Rightarrow xy=24\)(1)
Từ \(\frac{x}{2}=\frac{y}{3}\Rightarrow x=\frac{2y}{3}\) Thay vào (1)
\(\Rightarrow\frac{2y}{3}.y=24\Rightarrow y^2=\frac{3.24}{2}=36\Rightarrow y=\pm6\) thay vào \(x=\frac{2y}{3}\Rightarrow x\)
Bạn từ làm nốt nhé
đặt \(k=\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>x=2k,y=3k,z=4k\)
\(xy+z^2=2k.3k+4k.4k=6k^2+16k^2=22k^2=88=>k^2=4\)
\(=>\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
=>.....tự thay vào rồi tìm x,y,z
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=k\Rightarrow x=2k\\\frac{y}{3}=k\Rightarrow y=3k\\\frac{z}{4}=k\Rightarrow z=4k\end{cases}}\)
ta cod \(xy+z^2=88\)
thay \(2k.3k+4k.4k=88\)
\(k^2\left(2.3\right)+k^2\left(4.4\right)=88\)
\(k^26+k^216=88\)
\(k^222=88\)
\(k^2=88:22=4\)
\(\Rightarrow k=\pm2\)
do đó ......