Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
a) Ta có : (2x - 1)100 + (x - y)102 = 0
<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)
<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)
<=> \(x=y=\frac{1}{2}\)
b) Ta có: |x - 3| + (x + y)2020 = 0
<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
Với x = 3 và y = -3 thay vào biểu thức A :
A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)
a) Ta có (2x - 1)100 \(\ge\)0 với mọi x
(x - y)102 \(\ge\)0 với mọi x,y
Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y
Và (2x-1)100 + (x-y)102 = 0
<=> 2x - 1 = 0 <=> x = 1/2
và x - y = 0 và y = 1/2
b) Ta có : |x - 3| \(\ge\)0 với mọi x
(x + y)2020\(\ge\)0 với mọi x,y
Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y
Và |x - 3| + (x + y)2020 = 0
<=> x - 3 = 0 <=> x = 3
và x + y = 0 và y = -3
Rồi tự thay vào r tính A đi eiu :)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.
b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)